Skip to main content
Log in

Variations in the temperature and circulation of the atmosphere during the 11-year cycle of solar activity derived from the ERA-Interim reanalysis data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Using the data of the ERA-Interim reanalysis, we have obtained estimates of changes in temperature, the geopotential and its large-scale zonal harmonics, wind velocity, and potential vorticity in the troposphere and stratosphere of the Northern and Southern hemispheres during the 11-year solar cycle. The estimates have been obtained using the method of multiple linear regression. Specific features of response of the indicated atmospheric parameters to the solar cycle have been revealed in particular regions of the atmosphere for a whole year and depending on the season. The results of the analysis indicate the existence of a reliable statistical relationship of large-scale dynamic and thermodynamic processes in the troposphere and stratosphere with the 11-year solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Gray, J. Beer, M. Geller, et al., “Solar influence on climate,” Rev. Geophys. 48, RG4001 (2010). doi 10.1029/2009RG000282

    Article  Google Scholar 

  2. K. Labitzke, M. Kunze, and S. Brönnimann, “Sunspots, the QBO and the stratosphere in the north polar region—20 years later,” Meteorol. Z. 15 (3), 355–363 (2006).

    Article  Google Scholar 

  3. A. N. Gruzdev and V. A. Bezverkhnii, “Possible ozone influence on the quasi-biennial oscillation in the equatorial stratosphere,” Dokl. Earth Sci. 434 (1), 1279–1284 (2010).

    Article  Google Scholar 

  4. L. L. Hood and B. E. Soukharev, “The lower-stratospheric response to 11-yr solar forcing: Coupling to the troposphere–ocean response,” J. Atmos. Sci. 69 (6), 1841–1864 (2012).

    Article  Google Scholar 

  5. Y. Brugnara, S. Brönnimann, J. Luterbacher, and E. Rozanov, “Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets,” Atmos. Chem. Phys. 13 (13), 6275–6288 (2013).

    Article  Google Scholar 

  6. J. Zhou and K.-K. Tung, “Observed tropospheric temperature response to 11-yr solar cycle and what it reveals about mechanisms,” J. Atmos. Sci. 70 (1), 9–14 (2013).

    Article  Google Scholar 

  7. A. Kuchar, P. Sacha, J. Miksovsky, and P. Pisoft, “The 11-year solar cycle in current reanalyses: A (non)linear attribution study of the middle atmosphere,” Atmos. Chem. Phys. 15 (12), 6879–6895 (2015).

    Article  Google Scholar 

  8. M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey, “Global temperature response to the major volcanic eruptions in multiple reanalysis data sets,” Atmos. Chem. Phys. 15 (23), 13507–13518 (2015).

    Article  Google Scholar 

  9. H. Gleisner, P. Thejll, M. Stendel, E. Kaas, and B. Machenhauer, “Solar signals in tropospheric reanalysis data: Comparing NCEP/NCAR and ERA40,” J. Atmos. Sol.-Terr. Phys. 67 (8–9), 785–791 (2005).

    Article  Google Scholar 

  10. C. Claud, C. Cagnazzo, and P. Keckhut, “The effect of the 11-year solar cycle on the temperature in the lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 70 (16), 2031–2040 (2008).

    Article  Google Scholar 

  11. J. J. Bauman, P. B. Russell, M. A. Geller, and P. Hamill, “A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparison, 1984–1999,” J. Geophys. Res. 108 (D13), 4383 (2003). doi 10.1029/2002JD002993

    Google Scholar 

  12. A. N. Gruzdev and V. A. Bezverkhnii, “Quasi-biennial oscillation in the atmosphere over North America from ozonesonde data,” Izv., Atmos. Ocean. Phys. 41 (1), 29–42 (2005).

    Google Scholar 

  13. A. N. Gruzdev and V. A. Bezverkhnii, “Quasi-biennial variations in ozone and meteorological parameters over western Europe from ozonesonde data,” Izv., Atmos. Ocean. Phys. 42 (2), 203–214 (2006).

    Article  Google Scholar 

  14. A. N. Gruzdev, “Latitudinal structure of trends and effect of solar activity in stratospheric NO2,” Dokl. Earth Sci. 416 (7), 1057–1061 (2007).

    Article  Google Scholar 

  15. A. N. Gruzdev, “Latitudinal dependence of variations in stratospheric NO2 content,” Izv., Atmos. Ocean. Phys. 44 (3), 319–333 (2008).

    Article  Google Scholar 

  16. A. N. Gruzdev, “Latitudinal structure of variations and trends in stratospheric NO2,” Int. J. Remote Sens. 30 (15), 4227–4246 (2009).

    Article  Google Scholar 

  17. A. N. Gruzdev, “Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere,” Geomagn. Aeron. (Engl. Transl.), 54 (5), 633–639 (2014).

    Article  Google Scholar 

  18. A. N. Gruzdev, “Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity,” Atmos. Oceanic Opt. 27 (5), 403–411 (2014).

    Article  Google Scholar 

  19. T. A. Agekyan, Basics of Error Theory (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  20. L. G. Gray, S. T. Rumbold, and K. P. Shine, “Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone,” J. Atmos. Sci. 66 (8), 2403–2417 (2009).

    Article  Google Scholar 

  21. B. E. Soukharev and L. L. Hood, “Solar cycle variation of stratospheric ozone: Multiple regression analysis of longterm satellite sets and comparison with models,” J. Geophys. Res. 111, D20314 (2006). doi 10.1029/ 2006JD007107

    Article  Google Scholar 

  22. A. N. Gruzdev and V. A. Semenov, “Temperature response to the change in the stratospheric ozone content during the 11-year cycle of solar activity according to the climate model results,” in Atmospheric and Oceanic Optics, Atmospheric Physics: Proceedings of the XXII International Symposium (IOA SO RAN, Tomsk, 2016), pp. D368–D371 [in Russian].

    Google Scholar 

  23. N. Butchart, “The Brewer–Dobson circulation,” Rev. Geophys. 52 (2), 157–184 (2014).

    Article  Google Scholar 

  24. J. R. Holton, An Introduction to Dynamical Meteorology (Elsevier, Burlington, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gruzdev.

Additional information

Original Russian Text © A.N. Gruzdev, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 4, pp. 502–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzdev, A.N. Variations in the temperature and circulation of the atmosphere during the 11-year cycle of solar activity derived from the ERA-Interim reanalysis data. Izv. Atmos. Ocean. Phys. 53, 441–448 (2017). https://doi.org/10.1134/S0001433817040053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817040053

Keywords

Navigation