Skip to main content
Log in

An elastic-viscoplastic constitutive model for the hot-forming of aluminum alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bertrand-Rossini et al., “Modeling of Metal-Forming Processes” (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988) p. 271.

    Google Scholar 

  2. J. M. Rigaut, D. Lochegnies, J. Oudin, J. C. Gelin and Y. Ravalard, “Modeling of Metal-Forming Processes” (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988) p. 261.

    Google Scholar 

  3. C. R. Boer, N. Rebelo, H. Rydstad and G. Schroder, “Process Modeling of Metal-Forming and Thermomechanical Treatment” (Springer-Verlag Berlin, Heidelberg, 1986).

    Google Scholar 

  4. D. Iddan and J. R. Tirosh, Journal of Applied Mechanics 63 (1996) 27.

    Google Scholar 

  5. O. C. Zienkiewicz and P. N. Godbole, International Journal for Numerical Methods in Engineering 8 (1974) 3.

    Google Scholar 

  6. H. Shi, A. J. Mclaren, C. M. Sellars, R. Shahani and R. Bolingbroke, Materials Science and Technology 13 (1997) 210.

    Google Scholar 

  7. T. Sheppard and A. Jackson, ibid. 13 (1997) 203.

    Google Scholar 

  8. J. M. Cabrera, J. J. Jonas and J. M. Prado, ibid. 12 (1996) 579.

    Google Scholar 

  9. S. R. Bodner, in “Unified Constitutive Equations for Creep and Plasticity,” edited by A. K. Miller (Elsevier Applied Science, New York, 1987) p. 273.

    Google Scholar 

  10. A. K. Miller, in “Unified Constitutive Equations for Creep and Plasticity,” edited by A. K. Miller (Elsevier Applied Science, New York, 1987) p. 139.

    Google Scholar 

  11. M. A. Rowley and E. A. Thornton, Journal of Engineering Materials and Technology 118 (1996) 19.

    Google Scholar 

  12. A. F. Skipor, S. V. Harren and J. Botsis, ibid. 118 (1996) 1.

    Google Scholar 

  13. L. Anand, ibid. 104 (1982) 12.

    Google Scholar 

  14. S. B. Brown, K. H. Kim and L. Anand, International Journal of Plasticity 5 (1989) 95.

    Google Scholar 

  15. V. M. Sample, L. A. Lalli and O. Richmond, “Modeling the Deformation of Crystalline Solids” (TMS, Warrendale, PA, 1991) p. 327.

    Google Scholar 

  16. D. C. Stouffer and L. T. Dame, “Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy” (John Wiley and Sons, New York, 1996).

    Google Scholar 

  17. S. R. Bodner and Y. Partom, Journal of Applied Mechanics 42 (1975) 385.

    Google Scholar 

  18. F. Garofalo, Transactions AIME 227 (1963) 351.

    Google Scholar 

  19. J. J. Jonas, C. M. Sellars and W. J. MCG. Tegart, Metallurgical Reviews 14 (1969) 1.

    Google Scholar 

  20. J. Sarkar, Y. V. R. K. Prasad and M. K. Surappa, Journal of Materials Science 30 (1995) 2843.

    Google Scholar 

  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes in FORTRAN: The Art of Scientific Computing,” 2nd ed. (Cambridge University Press, 1992).

  22. C. S. Barrett and T. B. Massalski, “Structure of Metals,” 3rd ed. (McGraw Hill, 1966).

  23. Z. Jin, G. T. Gray and Y. W. Kim, Materials Science and Engineering A 239 (1997) 729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhanam, S. An elastic-viscoplastic constitutive model for the hot-forming of aluminum alloys. Journal of Materials Science 35, 3647–3654 (2000). https://doi.org/10.1023/A:1004882001651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004882001651

Keywords

Navigation