Skip to main content
Log in

Radial Distribution Function of a Hard-Sphere Fluid

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A hard-sphere fluid (8788 particles) is modeled by the Monte Carlo method for 41 occupation coefficients in the range of η = 0.10-0.50 (step 0.01). The radial distribution functions were determined at 512 points in an interval of up to five hard sphere radii. In this interval, the number of analyzed particle pairs was from 1.8 · 10 9 to 9.0· 10 9 (η =0.10-0.50). The two-variable function g(r, η) was analytically expressed using least-squares analysis; standard deviation from the Monte Carlo data was of the order of 0.001. An equation of state is suggested for a hard-sphere fluid (standard deviation 0.002). A direct comparison shows that at high densities the accuracy of the expressions is one order of magnitude higher than that of the best relations reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. R. Ubelode, Melted State of Substances [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  2. B. Older and W. Hoover, Physics of Simple Liquids. Statistical Theory [Russian translation], G. Temperly, J. Rowlinson, and J. Rashbook (eds.), Mir, Moscow (1971), pp. 81-135.

  3. T. V. Ramakrishnan and M. Yussouf, Phys. Rev. B, 19, No. 3, 2775–2794 (1979).

    Google Scholar 

  4. R. Evans, Adv. Phys., 28, No. 2, 143–200 (1979).

    Google Scholar 

  5. M. Baus, J. Stat. Phys., 48, Nos. 5/6, 1129–1146 (1987).

    Google Scholar 

  6. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 30, No. 12, 5237–5247 (1971).

    Google Scholar 

  7. H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A, 4, No. 4, 1597–1607 (1971).

    Google Scholar 

  8. L. Verlet and J.-J. Weis, ibid., 5, No. 2, 939–952 (1972).

    Google Scholar 

  9. H. S. Kang, S. C. Lee, and T. Ree, J. Chem. Phys., 82, No. 1, 415–423 (1985).

    Google Scholar 

  10. R. Balescu, Equilibrium and Nonequilibrium Statistical Methods, Wiley, New York (1975).

    Google Scholar 

  11. C. A. Croxton, Liquid State Physics - A Statistical Mechanical Introduction, Cambridge University Press, London (1974).

    Google Scholar 

  12. D. Leveck, J.-J. Weis, and J.-P. Ansen, in: Monte Carlo Methods in Statistical Physics, K. Binder (ed.), Springer, Berlin (1979).

    Google Scholar 

  13. N. F. Carnahan and K. E. Stirling, J. Chem. Phys., 51, No. 2, 635–636 (1969).

    Google Scholar 

  14. B. R. A. Nijboer and L. Van Hove, Phys. Rev., 85, No. 5, 777–783 (1952).

    Google Scholar 

  15. F. E. Ree, R. N. Keeler, and S. L. McCarthy, J. Chem. Phys., 44, No. 9, 3407–3425 (1966).

    Google Scholar 

  16. J. A. Barker and D. Henderson, Mol. Phys., 21, No. 1, 187–191 (1971).

    Google Scholar 

  17. M. S. Wertheim, Phys. Rev. Lett., 10, No. 8, 321–323 (1963).

    Google Scholar 

  18. E. J. Thiele, J. Chem. Phys., 39, No. 2, 474–479 (1963).

    Google Scholar 

  19. W. R. Smith and D. Henderson, Mol. Phys., 19, No. 3, 411–415 (1970).

    Google Scholar 

  20. J. W. Perram, ibid., 30, No. 5, 1505–1509 (1975).

    Google Scholar 

  21. J. A. Barker and D. Henderson, Rev. Mod. Phys., 48, No. 4, 587–673 (1976).

    Google Scholar 

  22. R. J. Baxter, Aust. J. Phys., 21, 563–569 (1968).

    Google Scholar 

  23. D. Henderson and E. W. Grundke, J. Chem. Phys., 63, No. 2, 601–607 (1975).

    Google Scholar 

  24. F. H. Ree and W. G. Hoover, ibid., 40, No. 4, 939–950 (1964).

    Google Scholar 

  25. F. H. Ree and W. G. Hoover, ibid., 46, No. 11, 4181–4197 (1967).

    Google Scholar 

  26. J. L. Finney, Nature, 266, 309–314 (1977).

    Google Scholar 

  27. Yu. I. Naberukhin, Structural Models of Fluid [in Russian], Novosibirsk University Press, Novosibirsk (1981).

    Google Scholar 

  28. A. R. Denton and N. W. Ashcroft, Phys. Rev. A, 39, No. 9, 4701–4708 (1989).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlyukhin, Y.T. Radial Distribution Function of a Hard-Sphere Fluid. Journal of Structural Chemistry 41, 809–824 (2000). https://doi.org/10.1023/A:1004862219324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004862219324

Keywords

Navigation