Skip to main content
Log in

Molecular Structures and Vibrational Spectra of ScF3, YF3, and LaF3 as Calculated by the CISD+Q Method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular structures and vibrational spectra of ScF3, YF3, and LaF3 were studied by the Hartree–Fock– Roothaan method in terms of second-order Möller–Plesset perturbation theory and by the configuration interaction method including all singly and doubly excited configurations and Davidson's correction for quartic excitations (CISD+Q). The atomic core orbitals are defined in terms of the effective relativistic potentials suggested by Stevens et al. The equilibrium nuclear configuration is shown to be planar (D 3h symmetry) for ScF3 and YF3 and pyramidal (C 3v ) for LaF3 with a bond angle \(\alpha _e (F{\kern 1pt} - {\kern 1pt} La{\kern 1pt} - {\kern 1pt} F) = 117.5^ \circ \). The inversion barrier of LaF3 is very low: h = E(D 3h )- E(C 3v ) = 38 cm –1 (CISD+Q). The vibrational spectra were calculated by the variational method using the vibrational Hamiltonian describing the “nonrigidity” of a molecule with respect to out-of-plane deformation. The calculation results are compared with the previously published experimental data. The IR band assignments for matrix-isolated molecular conformations in a vapor over yttrium trifluoride were corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Akishin, V. A. Naumov, and V. M. Tatevskii, Vestn. Mosk. Gos. Univ., Ser. 2, Khim., No. 1, 229–236 (1959).

    Google Scholar 

  2. P. A. Akishin, V. A. Naumov, and V. M. Tatevskii, Kristallografiya, 4, 194–200 (1959).

    Google Scholar 

  3. P. A. Akishin and V. A. Naumov, Zh. Strukt. Khim., 2, No. 1, 3–6 (1961).

    Google Scholar 

  4. G. I. Giricheva, E. Z. Zasorin, G. V. Girichev, et al., ibid., 17, No. 5, 797–801 (1976).

    Google Scholar 

  5. E. Z. Zasorin, A. A. Ivanov, L. I. Ermolaeva, and V. P. Spiridonov, Zh. Fiz. Khim., 63, No. 3, 669–673 (1989).

    Google Scholar 

  6. R. D. Wesley and C. W. DeKock, J. Chem. Phys., 55, No. 8, 3866–3877 (1971).

    Google Scholar 

  7. R. D. Wesley and C. W. DeKock, J. Phys. Chem., 77, No. 4, 466–468 (1973).

    Google Scholar 

  8. J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Less-Common Met., 39, No. 2, 309–334 (1975).

    Google Scholar 

  9. E. W. Kaiser, W. E. Falconer, and W. Klemperer, J. Chem. Phys., 56, No. 11, 5392–5398 (1972).

    Google Scholar 

  10. V. G. Solomonik, V. V. Sliznev, and N. B. Balabanov, Zh. Neorg. Khim., 40, No. 12, 2024–2029 (1995).

    Google Scholar 

  11. S. Huzinaga, M. Klobukowski, Z. Barandiaran, and L. Seijo, J. Chem. Phys., 84, No. 11, 6315–6327 (1986).

    Google Scholar 

  12. L. L. Lohr and J. Q. Jia, Inorg. Chim. Acta, 119, No. 1, 99–105 (1986).

    Google Scholar 

  13. M. Dolg, H. Stoll, and H. Preuss, J. Mol. Struct. (Theochem), 235, Nos. 1/2, 67–79 (1991).

    Google Scholar 

  14. S. Di Bella, G. Lanza, and I. L. Fragala, Chem. Phys. Lett., 214, No. 6, 598–602 (1993).

    Google Scholar 

  15. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, No. 11, 1347–1363 (1993).

    Google Scholar 

  16. S. R. Langhoff and E. R. Davidson, Int. J. Quant. Chem., 8, No. 1, 61–72 (1974).

    Google Scholar 

  17. W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys., 81, No. 12, 6026–6033 (1984).

    Google Scholar 

  18. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem., 70, No. 2, 612–630 (1992).

    Google Scholar 

  19. S. Huzinaga, J. Andzelm, M. Klobukowski, et al., Phys. Sci. Data, Vol. 16, Elsevier, Amsterdam (1984).

    Google Scholar 

  20. V. G. Solomonik, Chemical Sciences Doctoral Dissertation, Moscow State University, Moscow (1993).

    Google Scholar 

  21. I. G. Sazonova and V. G. Solomonik, Zh. Prikl. Spectrosc., 42, No. 3, 489–492 (1985).

    Google Scholar 

  22. K. Kuczera, J. Mol. Struct., 160, Nos. 1/2, 159–177 (1987).

    Google Scholar 

  23. O. G. Polyachenok, Chemical Sciences Doctoral Dissertation, Leningrad State University, Leningrad (1972).

    Google Scholar 

  24. C. E. Myers and D. Graves, J. Chem. Eng. Data, 22, No. 4, 440–445 (1977).

    Google Scholar 

  25. S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitatsforlaget, Oslo (1968).

    Google Scholar 

  26. K. Kuchitsu, Bull. Chem. Soc. Jpn., 40, No. 3, 498–504 (1967).

    Google Scholar 

  27. E. Z. Zasorin, Zh. Fiz. Khim., 62, No. 4, 883–895 (1988).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomonik, V.G., Marochko, O.Y. Molecular Structures and Vibrational Spectra of ScF3, YF3, and LaF3 as Calculated by the CISD+Q Method. Journal of Structural Chemistry 41, 725–732 (2000). https://doi.org/10.1023/A:1004834730711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004834730711

Keywords

Navigation