Skip to main content
Log in

Influence of Environmental Factors on the Chemotaxis of Bradyrhizobium japonicum

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Dependence of motility and chemotaxis was studied in two strains of Bradyrhizobium japonicum upon several environmental factors. In both strains, chemotaxis was found to increase with an increasing concentration of the attractant (glucose) to 5.5 × 10–2 M. Both motility and chemotaxis reached their maximum in the two- to three-day cultures at neutral pH. The maximum motility of these bacteria occurred at 40°C. The maximum values of chemotaxis in these microorganisms were, however, observed at 20–25°C. Chemotaxis in acidic or alkaline media and at low temperatures was found to be markedly weaker. Nonoptimal values of these parameters in soil may be a limiting factor for the interaction of the given bacteria with soybean roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patyka, V.F., Kalinichenko, A.F., Kolmaz, Yu.T., and Kislukhina, M.V., The Role of Nitrogen-Fixing Microorganisms in the Enhancement of the Productivity of Agricultural Plants, Mikrobiol. Zh., 1997, vol. 59, no. 4, pp. 3–14.

    Google Scholar 

  2. Tolkachev, N.Z., The Potential of Symbiotic Nitrogen Fixation in the Cultivation of Soybean in Southern Ukraine, Mikrobiol. Zh., 1997, vol. 59, no. 4, pp. 34–41.

    Google Scholar 

  3. Panyi, T., Zolotarjav, I., Karpati, E., and Sik, T., Chemical Composition of Attractants from Leguminous Plant Root Exudates, Acta Microbiol. Hung., 1992, vol. 39, no. 3/4, p. 356.

    Google Scholar 

  4. Pueppke, S., Bolarious-Vasquez, M., Werner, D., et al., Release of Flavonoids by the Soybean Cultivars Mc Call and Peking and Their Perception as a Signals by the Nitrogen-Fixing Symbiosis Sinorhizobium fredii, Plant Physiol., 1998, vol. 117, no. 2, pp. 599–608.

    Google Scholar 

  5. Brezgunov, V.N., Zaval'skii, L.Yu., Lazarev, A.V., and Popov, V.G., Bacterial Chemotaxis, Usp. Mikrobiol., 1989, no. 23, pp. 3–28.

    Google Scholar 

  6. Katsy, E.I., Genetic, Biochemical, and Ecological Aspects of Motility and Chemotaxis in Phytopathogenic, Symbiotic, and Associative Bacteria, Usp. Sovrem. Biol., 1996, vol. 116, no. 5, pp. 579–593.

    Google Scholar 

  7. Armitage, J. and Schmitt, R., Bacterial Chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti— Variation on a Theme?, Microbiology (Reading, UK), 1997, vol. 143, no. 12, pp. 3671–3682.

    Google Scholar 

  8. Adler, J., Method for Measuring Chemotaxis and Use of the Method To Determine Optimum Condition for Chemotaxis by Escherichia coli, J. Gen. Microbiol., 1973, vol. 74, no. 1, pp. 77–91.

    Google Scholar 

  9. Shonard, D.R., Taylor, R.T., Tompson, A., and Knapp, R.B., Hydrodynamic Effects on Microcapillary Motility and Chemotaxis Assays of Methylosinus trichosporium, Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2737–2747.

    Google Scholar 

  10. Zhulin, I.B. and Armitage, J.P., Motility, Chemotaxis and Methylation-Independent Chemotaxis in Azospirillum brasilense, J. Bacteriol., 1993, vol. 175, no. 4, pp. 952–958.

    Google Scholar 

  11. Karpati, E. and Sik, T., Host Plant Specific Chemotaxis of Rhizobia, Acta Microbiol. Hung., 1992, vol. 39, no. 3/4, pp. 352–353.

    Google Scholar 

  12. Kirillova, N.P., Kozhevin, P.A., and Zvyagintsev, D.G., Accumulation Dynamics of Root-Nodule Bacteria on the Pea Seedling Roots, Mikrobiologiya, 1984, vol. 53, no. 1, pp. 117–122.

    Google Scholar 

  13. Parke, D., Rivelli, M., and Oruston, L.N., Chemotaxis to Aromatic and Hydroaromatic Acids: Comparison of Bradyrhizobium japonicum and Rhizobium trifolii, J. Bacteriol., 1985, vol. 163, no. 2, pp. 417–422.

    Google Scholar 

  14. Kape, R., Parniske, M., and Werner, D., Chemotaxis and nod Gene Activity of Bradyrhizobium japonicum in Response to Hydroxycinnamic Acids and Isoflavonoids, Appl. Environ. Microbiol., 1991, vol. 57, pp. 316–319.

    Google Scholar 

  15. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1968.

    Google Scholar 

  16. Elkan, G. and Kwik, I., Nitrogen, Energy and Vitamin Nutrition of Bradyrhizobium japonicum, J. Appl. Bacteriol., 1968, vol. 31, no. 4, pp. 399–404.

    Google Scholar 

  17. Bobro, M.A., Ogurtsov, E.N., and Vitsindu, E., Soybean Productivity as Dependent on the Time of Sowing, Soya: genetika, selektsiya, tekhnologiya vyrashchivaniya i ispol'zovaniya na pishchevye i kormovye tseli. Materialy I Vseukrainskoi konf. po soe 21–22 oktyabrya 1993, Odessa (Soybean: Genetics, Selection, and Technology of Cultivation and Utilization as Food and Fodder: Proc. All-Ukraine Conf. on Soybean, Oct. 21–22, 1993Odessa), Odessa, 1993, pp. 30–31.

  18. Smith, R.S., Legume Inoculant Formulation and Application, Can. J. Microbiol., 1992, vol. 38, no. 6, pp. 485–492.

    Google Scholar 

  19. Dzoblaev, M.G., Toguzov, B.B., and Gozdanov, A.U., A Method for Inoculation of Soybean Plants, Russian Federation Patent 2110905 of May 20, 1998, Byul. Izobr., no. 14.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdish, I.K., Antonyuk, T.S. & Chuiko, N.V. Influence of Environmental Factors on the Chemotaxis of Bradyrhizobium japonicum. Microbiology 70, 91–95 (2001). https://doi.org/10.1023/A:1004805207396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004805207396

Navigation