Skip to main content
Log in

Small-scale spatial soil-plant relationship in semi-arid gypsum environments

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Studies on soil patterning on a small scale in arid and semi-arid regions have rarely been conducted. Many papers implicitly assume that plant distribution is controlled by some soil variables acting at small scales. We have directly tackled the relationships between soil and some biotic variables including plant distribution at small scales in an Iberian semi-arid gypsum environment. This has been carried out by means of Canonical Correspondence Analysis as a hypothesis-testing tool. CCA models show that the spatial data matrix is able to explain a relevant fraction of the soil data set (P < 0.001). The most important variable, as firstly selected in the CCA stepwise selection procedure, suggests the existence of a vegetation-elevation gradient in relation to soil physical properties; the rest of selected variables indicates the existence of other spatial trends which may be related to certain microgeomorphological features. On the other hand, only the cover of annuals and the cover of litter are selected in the case of the biotic data set as constraining matrix, but not the cover of any perennial plant. Partial CCA models indicated that the remaining information explained by the spatial data set after adjusting the biotic set as covariables is also significant (p < 0.001). This variability is not related to the existence of vegetation bands as shown by the two selected variables in the case of the partial CCA models. The primary source of spatial soil variation is related to the existence of three community bands and these differences are able to explain even the change of plant life forms in vegetated band. The soil parameters controlling the changes are mainly related to texture and surface features. However, we detected other sources of spatial soil variation out of this primary model. This hierarchical spatial pattern seems to be related to some geomorphological traits of the landscape, such as soil crust strength, presence of gypsum crystals or bare zones, and not to the presence of mature gypsophytes (at least the five most frequent) which might ameliorate the soil environment. Furthermore, the biotic data set is not able to explain any new fraction of soil variability out of that already explained by the spatial data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arslan A 1995 A computer program to express the properties of gypsiferous soils. Can. J. Soil Sci. 75, 459–462.

    CAS  Google Scholar 

  • Artieda O 1993 Factores geológicos que inciden en el desarrollo de los suelos en un medio semiárido. El caso de Quinto (Zaragoza). Tesis de Licenciatura. Universidad de Zaragoza, Spain. 305 p.

    Google Scholar 

  • Barbour M G and Díaz D V 1973 Larrea plant communities on bajada and moisture gradients in the United States and Argentina. Vegetatio 28, 335–357.

    Article  Google Scholar 

  • Borcard D and Legendre P 1994 Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Ecol. Monog. 27, 325–349.

    Google Scholar 

  • Borcard D, Legendre P and Drapeau P 1992 Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.

    Article  Google Scholar 

  • Borselli L, Biancalani R, Giordani C, Carnicelli S and Ferrari G A 1996 Effect of gypsum on seedling emergence in a kaolinitic crusting soil. Soil Technol. 9, 71–81.

    Article  Google Scholar 

  • Boukhris Mand Loissant P 1975 Aspects ecologiques de la nutrition minerale de plantes gypsicoles di Tunisie. Rev. Ecol. Biol. Sol. 12, 329–348.

    CAS  Google Scholar 

  • Bowers M A 1988 Plant associations on a Sonoran Desert bajada: geographical correlates and evolutionary source pools. Vegetatio 74, 107–112.

    Article  Google Scholar 

  • Bowers M A and Lowe C H 1986 Plant-form gradients on Sonoran Desert bajadas. Oikos 46, 284–291.

    Google Scholar 

  • Callaway R M and D'Antonio C M 1991 Shrub facilitation of coast live oak establishment in Central California. Madroño 38, 158–169.

    Google Scholar 

  • Chapin F S III, Walker L R, Fastie C L and Sharman L C 1994 Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monog. 64, 149–175.

    Article  Google Scholar 

  • Coetzee M A S and Rogers K H 1991 Environmental correlates of plant species distribution on the Nyl River floodplain. Sth. Afr. J. Aquat. Sci. 17, 44–50.

    Google Scholar 

  • Daiyuan P, Bouchard A, Legendre P and Gérald D 1998 Influence of edaphic factors on the spatial structure of inland halophytic communities: a case study in China. J. Veg. Sci. 9, 797–804.

    Article  Google Scholar 

  • Dunkerley, D L 1997 Banded vegetation: development under uniform rainfall from a simple cellular automaton model. Plant Ecol. 129, 103–111.

    Article  Google Scholar 

  • Duvigneaud P and Denaeyer de Smet S 1968 Essai de classification chimique (éléments minéraux) des plantes gypsicoles du bassin de l'Ebre. Bulletin de la Société Royale de Botanique de la Belgique 101, 279–291.

    Google Scholar 

  • Eilertsen O, Økland R H, Økland T and Pedersen O 1990 Data manipulation and gradient length estimation in DCA ordination. J. Veg. Sci. 1, 261–270.

    Article  Google Scholar 

  • Eldridge D J, Westoby Mand Holbrook K G 1991 Soil-surface characteristics, microtopography and proximity to mature shrubs: effects on survival of several cohorts of Atriplex vesicaria seedlings. J. Ecol. 78, 357–364.

    Google Scholar 

  • Escudero A, Carnes L F and Pérez-García F 1997. Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J. Arid Environ. 36, 487–497.

    Article  Google Scholar 

  • Escudero A and Pajarón S 1994 Numerical syntaxonomy of the Asplenietalia petrarchae in the Iberian Peninsula. J. Veg. Sci. 5,76–85.

    Article  Google Scholar 

  • Escudero A, Somolinos R C, Olano J M and Rubio A 1999 Factors controlling the establishment of Helianthemum squamatum, and endemic gypsophile of semi-arid Spain. J. Ecol. 87, 1–13.

    Article  Google Scholar 

  • Escudero A, Iriondo J M, Olano J M, Rubio A and Somolinos R C How is a gypsophyte established? The case of Lepidium subulatum (Cistaceae). Am. J. Bot. (In press).

  • Eswaran H and Zi-Tong G 1991 Properties Genesis Classification and Distribution of Soils with Gypsum. SSSA Special Publication n. 26, pp In occurence, characteristics and genesis of carbonate, gypsum and silica accumulation in soils. Ed. W D Nettleton 89–119. Soil Sci. Soc. Amer., Madison, Wisconsin.

    Google Scholar 

  • Fowler N 1986 The role of competition in plant communities in arid and semiarid regions. Ann. Rev. Ecol. Syst. 17, 89–110.

    Article  Google Scholar 

  • García Moya E and Mckell C M 1970 Contribution of shrubs to the nitrogen economy of a desert wash plant community. Ecology 51, 81–88.

    Article  Google Scholar 

  • Guerrero-Campo J, Alberto F, Hodgson J, García-Ruiz J M and Montserrat-Martí G 1999a Plant community patterns in a gypsum area of NE Spain. I: Interactions with topographic factors and soil erosion. J. Arid Environ. 41, 401–410.

    Article  Google Scholar 

  • Guerrero-Campo J, Alberto F, Maestro M, Hodgson J and Montserrat-Martí G 1999b Plant community patterns in a gypsum area of NE Spain. II: effects of ion washing on topographic distribution of vegetation. J. Arid Environ: 411–419.

  • Gutiérrez J R, Meserve P L, Contreras L, Vásquez C H and Jaksic F M1993 Spatial distribution of soil nutrients and ephemeral plants underneath and outside the canopy of Porlieria chilensis shrubs (Zygophyllaceae) in arid coastal Chile. Oecologia 95, 347–352.

    Article  Google Scholar 

  • Higgins S, Rogers K H and Kemper J 1997 A description of the functional vegetation pattern of a semi-arid floodplain South Africa. Plant Ecol. 129, 95–101.

    Article  Google Scholar 

  • Hook P B, Burke I C and Lauenroth WK 1991 Heterogeneity of soil and plant N and C associated with individual plants and openings in North America short-grass steppe. Plant Soil 138, 247–256.

    Article  CAS  Google Scholar 

  • Jackson R B, Manwaring, J H and Caldwell M M 1990 Rapid physiological adjustment of roots to localized soil enrichment. Nature 344, 58–60.

    PubMed  CAS  Google Scholar 

  • Johansen J R 1993 Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29, 140–147

    Article  Google Scholar 

  • John E and Dale M R T 1990 Environmental correlates of species distributions in a saxicolous lichen community. J. Veg. Sci. 1, 385–392.

    Article  Google Scholar 

  • Kruger F J, Mitchell D T and Jarvis J U M (eds) 1983 Mediterranean-Type Ecosystems. The role of nutrients. Ser. Ecological Estudies, 43. Springer-Verlag, Berlin. 552 p.

  • Lavorel S, Lebreton J, Debussche M and Lepart J 1991 Nested spatial patterns in seed bank and vegetation or Mediterranean old fields. J. Veg. Sci. 2, 367–376.

    Article  Google Scholar 

  • Le Houérou H N 1986 The desert and arid zones of northern Africa. In Hot Deserts and Arid Shrublands B. Ecosystems of the World 12B. Eds M Evenari and DW Goodall. pp 101–148. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre P and Anderson M J 1999 Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24.

    Article  Google Scholar 

  • Legendre P and Fortin M J 1989 Spatial pattern and ecological analysis. Vegetatio 80, 107–138.

    Article  Google Scholar 

  • Loveday J and McIntyre S 1974 Methods for analysis of irrigated soils. Tech. Com. no 54 of the Commonwealth Bureau of Soils. pp 135–137.

    Google Scholar 

  • MacMahon J A and Wagner F H 1985 The Mojave Sonoran and Chihuahuan deserts of North America. In Hot Deserts and Arid Shrublands A. Ecosystems of theWorld 12A. EdsME venari and D W Goodall. pp 105–202. Elsevier, Amsterdam.

    Google Scholar 

  • McAuliffe J R 1994 Landscape evolution soil formation ecological patterns and processes in Sonoran Desert Bajadas. Ecol. Monog. 64, 111–148.

    Article  Google Scholar 

  • McCune B 1997 Influence of noisy environmental data on canonical correspondence analysis. Ecology 78, 2617–2624.

    Article  Google Scholar 

  • Meyer S E 1986 The ecology of gypsophile endemism in the Eastern Mojave desert. Ecology 67, 1303–1313.

    Article  Google Scholar 

  • Meyer S E and García-Moya E 1989 Plant community patterns and soil moisture regime in gypsum grassland of north central Mexico. J. Arid Environ. 16, 147–155.

    Google Scholar 

  • Meyer S E, García-Moya E and Lagunes Espinoza A L C 1992 Topographic and soil effects on gypsophile plant community patterns in Central Mexico. J. Veg. Sci. 3, 429–429.

    Article  Google Scholar 

  • Monturiol F and Alcalá del Olmo L 1990 Mapa de asociaciones de suelos de la Comunidad de Madrid. Escala 1:200.000. C.S.I.C, Madrid, Spain. 71 p.

    Google Scholar 

  • Moro M J, Pugnaire F I, Haase P and Puigdefábregas J 1997 Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct. Ecol. 11, 425–431.

    Article  Google Scholar 

  • Nelson R E, Klamath C and Nettleton W D 1978 Determinign the gypsum content and expressing the properties of gypsiferous soils. Soil Sci. Soc. Am. Proc. 42, 659–661.

    Article  CAS  Google Scholar 

  • Økland R H and Eilertsen O 1994 Canonical Correspondence Analysis with variation partitioning: some comments and an application. J. Veg. Sci. 5(1), 127–138.

    Article  Google Scholar 

  • Ortíz-Bernard I, Simón M, Iriarte A and García I 1997 Caracterización de las aguas de escorrentía en un paisaje desarrollado sobre materiales evaporíticos. Edafología 3(1), 3–12.

    Google Scholar 

  • Palmer M W 1993 Putting things in even better order, the advantages of canonical correspondence analysis. Ecology 74(8), 2215–2230.

    Article  Google Scholar 

  • Pavlik B M 1980 Patterns of water potential and photosynthesis of desert sand dune plants, Eureka Valley, California, USA. Oecologia 46, 147–154.

    Article  Google Scholar 

  • Porta J 1996 Methodology and study techniques of gypsum in soils, a review. In International Symposium on Soils with Gypsum. Ed. RM Poch. pp 21–33. Univ. Lleida, Lleida.

    Google Scholar 

  • Porta J, López-Acevedo M and Roquero C 1994 Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa, Madrid, Spain. 807 p.

    Google Scholar 

  • Puignaire F I, Haase P and Puigdefábregas J 1996 Facilitation between higher plant species in a semiarid environment. Ecology 77, 1420–1426.

    Article  Google Scholar 

  • Rice E L 1984 Allelopathy. Col. XI. Ser. Physiological Ecology. Academic Press. Orlando. 422 p.

    Google Scholar 

  • Rivas-Martínez S 1987 Memoria del mapa de series de vegetación de España 1:400.000. ICONA, Madrid, Spain. 268 p.

    Google Scholar 

  • Rivas-Martínez S and Costa M 1970 Comunidades gipsícolas del centro de España. Anal. Inst. Bot. A.J. Cavanilles 27, 193–224.

    Google Scholar 

  • Sabatier R, Lebreton J and Chessel D 1989 Principal component analysis with instrumental variables as a tool for modelling composition data. In Multiway Data Analysis. Eds R Coppi and S Bolasco. pp 341–352. North Holand Publ., Amsterdam.

    Google Scholar 

  • Sala O E, Lauenroth W K and Golluscio R A 1997. Plant functional types in temperate semi-arid regions. In Plant Functional Types. Eds TM Smith, HH Shugart and FI Woodward. pp 217–233. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Schimel D S and Parton W J 1986 Microclimatic controls on nitrogen mineralization and nitrification in short grass steppe soils. Plant Soil 93, 347–357.

    Article  Google Scholar 

  • Schlesinger W H, Raikes J A, Hartley A E and Cross A F 1996 On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77, 364–374.

    Article  Google Scholar 

  • Stein R and Ludwing J A 1979 Vegetation and soil patterns on a Chihuahuan Desert Bajada. Am. Midl Nat 102, 28–37.

    Article  Google Scholar 

  • Ter Braak C J F 1986 Canonical correspondence analysis, a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5), 1167–1179

    Article  Google Scholar 

  • Ter Braak C J F 1987a Ordination. In Data Analysis in Community and Landscape Ecology. Eds RHG Jongman, CJF Ter Braak and OFR Van Togeren. pp 91–173. Pudoc, Wageningen. The Netherlands.

    Google Scholar 

  • Ter Braak C J F 1987b The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69, 69–77.

    Article  Google Scholar 

  • Ter Braak C J F 1988 CANOCO - a FORTRAN program for canonical community ordination by [partial] [detrented] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Agricultural Mathematics Group, Report LWA-88-02, Wageningen. The Netherlands.

    Google Scholar 

  • Ter Braak C J F 1990 Update notes: CANOCO version 3.1. Microcomputer Power. Ithaca, New-York, USA. 35 p.

    Google Scholar 

  • Ter Braak C J F and Juggins S 1993 Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270, 485–502.

    Article  Google Scholar 

  • Ter Braak C J F and Prentice I 1988 A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317.

    Article  Google Scholar 

  • Ter Braak C J F and Smilauer P 1997 Canoco for Windows version 4.0. Centre for Biometry Wageningen. Wageningen. The Netherlands.

    Google Scholar 

  • Ter Braak C J F and Verdonschot P F M 1995. Canonical Correspondence Analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255–289.

    Article  Google Scholar 

  • Valiente-Banuet A, Bolongaro Crevenna A, Briones O, Ezcurra E, Rosas M, Nuñez H, Barnard G and Vázquez E 1991 Spatial relationships between cacti and nurse shrubs in a semiarid environment in Central Mexico. J. Veg. Sci. 2, 15–20.

    Article  Google Scholar 

  • Verdonschot P F M and Ter Braak C J F 1994. An experimental manipulation of oligochaete communities in mesocosms treated with chloropyrifos or nutrient additions: multivariate analyses with Monte Carlo permutation tests. Hydrobiologia 278, 251–266.

    Article  Google Scholar 

  • Verheye W H and Boyadgiev T G 1997 Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use and Management 13, 97–103.

    Google Scholar 

  • Walter H and Box E O 1983 Middle Asian deserts. In Temperate Deserts and Semi-deserts. Ecosystems of the World 5. Ed. NE West. pp 79–104. Elsevier, Amsterdam.

    Google Scholar 

  • Whittaker R H 1956 Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26, 1–80.

    Article  Google Scholar 

  • Woondzell S and Ludwing J A 1995 Community dynamics of desert grasslands: influences of climate, landforms and soils. J. Veg. Sci. 6, 377–390.

    Article  Google Scholar 

  • Yanai H 1986. Some generalizations of correspondence analysis in terms of projection operators. In Data Analysis and Informatics 4. Eds E Diday, Y Escoufier, L Lebart, J Pages, Y Schektman and Tomassone pp 193–207. Amsterdam.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, A., Escudero, A. Small-scale spatial soil-plant relationship in semi-arid gypsum environments. Plant and Soil 220, 139–150 (2000). https://doi.org/10.1023/A:1004764411116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004764411116

Navigation