Skip to main content
Log in

Grain boundary strength in non-cubic ceramic polycrystals with misfitting intragranular inclusions (nanocomposites)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The residual stress distribution in polycrystalline ceramics with thermal expansion anisotropy and misfitting intragranular dispersion is studied through micromechanical simulation. The effective grain boundary strength under remote tension is derived from the stability of a grain-boundary microcrack with thermal elastic residual stresses. This result is then applied to the strength and fracture properties of a two-phase nanocomposite (5 vol% SiC-Al2O3). The residual stresses from misfitting dispersion increase the effective grain boundary strength of the nanocomposite from 1.5 to 5 times more than that of the single-phase polycrystal, depending on the grain size of the matrix phase. The residual stresses reduce the instability range of microcrack precursors at grain junctions and increase the initial level of driving force for critical microcrack extension. Predicted strengthening of grain boundaries leads, in turn, to the superior inert strength of unnotched nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Niihara, J. Cer. Soc. Jap. 99 (1991) 974.

    Google Scholar 

  2. J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan and G. A. Miller, J. Am. Cer. Soc. 76 (1993) 503.

    Google Scholar 

  3. I. Levin, W. D. Kaplan, D. G. Brandon and T. Wieder, Acta Metall. Mater. 42 (1994) 1147-1154.

    Google Scholar 

  4. I. Levin, W. Kaplan, D. Brandon and A. A. Layyous, J. Am. Cer. Soc. 78 (1995) 254-256.

    Google Scholar 

  5. G. Pezzotti, T. Nishida and M. Sakai, J. Cer. Soc. Jap. 103 (1995) 901-909.

    Google Scholar 

  6. M. J. Hoffman, M. Sternitzke, J. RÖdel and R. J. Brook, in “Fracture Mechanics of Ceramic, Vol. 12,” edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Ya. Shevchenko (Plenum Publ. Corp., NY, 1996) p. 179.

    Google Scholar 

  7. T. Ohji, T. Hirano, A. Nakahira and K. Niihara, J. Am. Cer. Soc. 79 (1996) 33-45.

    Google Scholar 

  8. T. Ohji and K. Niihara, J. Cer. Soc. Jap. 104 (1996) 581-582.

    Google Scholar 

  9. G. Pezzotti, V. Sergo, K. Ota, O. Sbaizero, N. Muraki, T. Nishida and M. Sakai, ibid. 104 (1996) 497-503.

    Google Scholar 

  10. M. Hoffman and J. RÖdel, ibid. 105 (1997) 1086-1090.

    Google Scholar 

  11. S. Jiao, M. L. Jenkins and R. W. Davidge, Acta Mater. 45 (1997) 149-156.

    Google Scholar 

  12. J. Luo and R. Stevens, J. Europ. Cer. Soc. 17 (1997) 1565-1572.

    Google Scholar 

  13. B. R. Lawn, N. P. Padture, L. M. Braun and S. J. Bennison, J. Am. Cer. Soc. 76 (1993) 2235-2240.

    Google Scholar 

  14. M. Sternitzke, J. Europ. Cer. Soc. 17 (1997) 1061-1082.

    Google Scholar 

  15. T. Mori and K. Tanaka, Acta Metall. 21 (1973) 571-574.

    Google Scholar 

  16. R. A. Cutler and A. V. Virkar, J. Mater. Sci. 20 (1985) 3557-3573.

    Google Scholar 

  17. M. Taya, S. Hayashi, A. Kobayashi and H. S. YOON, J. Am. Cer. Soc. 73 (1990) 1382-1391.

    Google Scholar 

  18. C. M. Chimani, H. J. BÖhm and F. G. Rammerstorfer, Scripta Mater. 36 (1997) 943-947.

    Google Scholar 

  19. S. Schmauder, in “Fracture Mechanics of Ceramics, Vol. 12,” edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Ya. Shevchenko (Plenum Publ. Corp., NY, 1996) p. 443.

    Google Scholar 

  20. J. D. Eshelby, in “Progress in Solid State Physics, Vol.3,” edited by F. Seitz and D. Turnbull (Academic Press, NY, 1956) p. 79.

    Google Scholar 

  21. F. F. Lange, in “Fracture Mechanics of Ceramics, Vol. 2,” edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Publ. Corp., NY, 1974) p. 599.

    Google Scholar 

  22. A. G. Evans, Acta Metall. 26 (1978) 1845-1853.

    Google Scholar 

  23. D. R. Clarke, ibid. 28 (1980) 913-924.

    Google Scholar 

  24. R. W. Davidge, ibid. 29 (1981) 1695-1702.

    Google Scholar 

  25. Y. M. Ito, M. Rosenblatt, L. Y. Chang, F. F. Lange and A. G. Evans, Int. J. Fract. 17 (1982) 483-491.

    Google Scholar 

  26. Y. Fu, A. G. Evans and W. M. Kriven, J. Am. Cer. Soc. 67 (1984) 626-630.

    Google Scholar 

  27. V. Tvergaard and J. W. Hutchinson, ibid. 71 (1988) 157-166.

    Google Scholar 

  28. Z. Li and R. C. Bradt, ibid. 72 (1989) 70-77.

    Google Scholar 

  29. N. Laws and J. C. Lee, J. Mech. Phys. Solids 37 (1989) 603-618.

    Google Scholar 

  30. S. M. Wiederhorn, J. Am. Cer. Soc. 52 (1969) 485-491.

    Google Scholar 

  31. R. M. Mcmeeking and A. G. Evans, ibid. 65 (1982) 242-247.

    Google Scholar 

  32. D. M. Parks, Int. J. Fract 10 (1974) 487-502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalev, S., Ohji, T., Yamauchi, Y. et al. Grain boundary strength in non-cubic ceramic polycrystals with misfitting intragranular inclusions (nanocomposites). Journal of Materials Science 35, 1405–1412 (2000). https://doi.org/10.1023/A:1004758831048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004758831048

Keywords

Navigation