Skip to main content
Log in

Crystallisation of selenium thin films doped with iodine after evaporation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous selenium thin films deposited under vacuum have been doped with iodine either during or after crystallisation. It is shown that when the films are first crystallised at 363 K for 6 h and then submitted to iodine atmosphere at 363 K for 1 h, the structural properties of the films are not modified while their conductivity increases by a factor of 8. Iodine atmosphere induces post crystallisation of amorphous selenium films even at room temperature by increasing the selenium atom mobility at the surface of the films, which induces growth of crystalline spherulites. With annealing, when the heating rate is high (>15 K/min), constraints appear in the films, the density of spherulites increases and the films are inhomogeneous. When the heating rate is small and constant (1 K/min) the interaction between iodine and selenium takes place all over the sample and there is only a small density of small spherulites, while the crystallisation of the whole sample is more homogeneous. XPS and microprobe analysis that the iodine is equally repartitioned in the selenium film show it. Moreover there is a mixture of neutral iodine andS I3 as shown by XPS and Raman studies. The high crystalline quality of the films can explain the high conductivity (>10−3 Ω−1 cm−1) of these selenium doped films

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Kim and D. Turnbull, J. Appl. Phys. 44 (1973) 5237.

    Google Scholar 

  2. D. Turnbull Idem., ibid. 45 (1974) 3447.

    Google Scholar 

  3. G. Gross, R. B. Stephens and D. Turnbull, ibid. 48 (1977) 1139.

    Google Scholar 

  4. J. P. Audiere, CH. Mazieres and J. C. Carballes, Journal of Non-Crystalline Solids 34 (1979) 37.

    Google Scholar 

  5. E. A. Chatterjee and S. P. Sen gupta, Journal of Materials Science Letters 5 (1986) 559.

    Google Scholar 

  6. N. G. Patel, B. H. Lashkari, C. J. Panchal and K. K. Makhija, Cryst. Res. Technol. 29 (1994) 859.

    Google Scholar 

  7. G. Safoula, J. C. Bernede, A. Latef, E. Rzepka and M. Spiesser, Mater. Chem. and Phys. 20 (1988) 571.

    Google Scholar 

  8. J. C. Bernede, G. Safoula, R. Messoussi, A. Bonnet and A. Conan, J. Phys. Chem. Solids 50 (1989) 1159.

    Google Scholar 

  9. R. Messoussi, J. C. Bernede, G. Safoula, E. Rzepka and M. Spiesser, Physica. Stat. Sol. (a) 123 (1991) 175.

    Google Scholar 

  10. J. Rowlands and S. Kasap, Physics Today,November 1997, 24.

  11. J. W. Boag, Xeroradiography, Phys. Med. Bio1 18 (1973) 3.

    Google Scholar 

  12. R. A. Zingaro and W. C. Cooper, Selenium (Van Nostrand/Reinhald Co., New-York, 1974).

    Google Scholar 

  13. C. H. Champness, J. Appl. Phys. 32 (1987) 919.

    Google Scholar 

  14. H. P. D. Lanyon, Phys. Stat. Sol. (a) 2 (1970) 287.

    Google Scholar 

  15. S. Poganski, Zeitschnift Für Physik 134 (1953) 469.

    Google Scholar 

  16. E. F. Kaelble, “Handbook of X-Rays,” (McGraw-Hill, New-York, 1967).

    Google Scholar 

  17. DR. Briggs and M. P. Seah, Pratical Surface Analysis Vol. 1–Auger and X-Rays Photoelectron Spectroscopy (John Wiley & sons, 1990) p. 543.

  18. P. S. Carroll and J. S. Lannin, Phys. Rev. B 27 (1983) 1028.

    Google Scholar 

  19. G. Lucovsky, R. C. Keezer and E. Burstein, Solid State Communications 5 (1967) 439.

    Google Scholar 

  20. A. G. Maki and R. Rorneris, Spectrochimica Acta 23A (1967) 867.

    Google Scholar 

  21. W. F. Howard and L. Andrews, Journal of Raman Spectroscopy 2 (1974) 447.

    Google Scholar 

  22. L. Andrews, E. S. Prochaska and A. Loewenschuss, Inorg. Chem. 19 (1980) 463.

    Google Scholar 

  23. M. I. El-azab and C. H. Champness, IEEE Trans. Elect. Dev. ED-27 (1980) 255.

    Google Scholar 

  24. J. C. Bernede, H. Hadouda, S. J. Li, H. Essaidi, J. Pouzet and A. Khelil, J. Phys. III 6 (1996) 1697.

    Google Scholar 

  25. J. P. Audiere, C. Mazieres and J. C. Carballes, Journal of Non-Cystalline Solids 27 (1978) 411 (a) and 34 (1979) 37 (b).

    Google Scholar 

  26. Y. S. Chiang and J. K. Johnson, J. Appl. Phys. 38 (1967) 1647.

    Google Scholar 

  27. M. B. Ijanjua, J. M. Toguri and W. C. Cooper, J. Can. Phys. 49 (1970) 475.

    Google Scholar 

  28. M. K. Agarwual and V. V. Rao, Cryst. Res. Technol. 24 (1989) 1215.

    Google Scholar 

  29. C. H. Champness and R. H. Hoffman, Journ. Non-Crystalline Solids 4 (1970) 138.

    Google Scholar 

  30. J. Baglio, J. Sol. Sat. Chem. 49 (1983) 166.

    Google Scholar 

  31. K. Zellama, P. Germain, S. Squelard and J. C. Bourgoin, J. Appl. Phys. 50 (1979) 6995.

    Google Scholar 

  32. G. Fleury, C. Lhermittte and G. Viger, Journ. Non-Crystalline Solids 46 (1981) 427.

    Google Scholar 

  33. J. Heleskivi, T. Stubb and T. Suntola, J. Appl. Phys. 40 (1969) 2923.

    Google Scholar 

  34. K. W. Plesner, Proc. Phys. Soc. B64 (1951) 671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Almeida, K., Napo, K., Safoula, G. et al. Crystallisation of selenium thin films doped with iodine after evaporation. Journal of Materials Science 35, 2985–2991 (2000). https://doi.org/10.1023/A:1004730811005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004730811005

Keywords

Navigation