Skip to main content

Advertisement

Log in

Nickel selenide thin films: opto-electric and thermoelectric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel selenide thin films were synthesized on the amorphous templates utilizing a dip method. In the synthesis process, ascorbic acid acts as complexing agent. Hydrazine hydrate too plays a role of complexing agent and/or catalyst. Structural, optical, microscopic, electrical and thermoelectrical parameters were estimated. The X-ray diffraction spectrum of nickel selenide shows polycrystalline nature having hexagonal structure. The absorptivity of nickel selenide films is highly absorptive with a direct type of transition. The optical gap of NiSe was found to be 2.18 eV. The Urbach energy was found to be 0.275 eV. The ratio of Ni: Se in the thin film was 1:1. Micrograph of nickel selenide thin film showing irregular shaped fine grains distributed to the whole surface. The electrical conductance of nickel selenide suggests that the activation energy was found to be 0.024 and 0.331 eV for lower and higher temperature areas, respectively. At 300 K, the carrier concentration is estimated to be 2.58 × 1019 and 3.55 × 1019 at 525 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Anand, R. Rajan, M. Said, L. Tee, Adv. Energy Convers. Mater. 1, 55 (2020)

    Article  Google Scholar 

  2. T. Anand, S. Shariza, Electrochim. Acta. 81(81), 64 (2012)

    Article  Google Scholar 

  3. G. Chandra, D. Singh, D. Shrivastava, S. Sahu, J. Phys. D 17, 2125 (1984)

    Article  ADS  Google Scholar 

  4. S. Kale, C. Lokhande, Mater. Chem. Phys. 62, 103 (2000)

    Article  Google Scholar 

  5. P. Kalita, B. Sarma, H. Das, Bull. Mater. Sci. 23, 313 (2000)

    Article  Google Scholar 

  6. T. Anand, M. Zaidan, S. Shariza, Proc. Eng. 53, 555 (2013)

    Article  Google Scholar 

  7. A. Hamad, Z. Elmandouch, H. Elmeleegi, Acta Physica Polonia A 127, 901 (2015)

    Article  ADS  Google Scholar 

  8. P. Nwofe, R. Chikwenze, P. Agbo, H. Igwe, Asian. J. Sci. Res. 10, 43 (2017)

    Google Scholar 

  9. W. Zhang, Z. Hui, Y. Cheng, L. Zhang, Y. Xie, Y. Qian, J. Cry. Growth 209, 213 (2000)

    Article  ADS  Google Scholar 

  10. M. Xue, Z. Fu, Electrochem. Comm. 8, 1855 (2006)

    Article  Google Scholar 

  11. Y. Liu, Q. Xu, R. Wang, Y. Zhang, L. Zhu, Z. Wang, W. Zheng, J. Mater. Chem. A 8, 797 (2020)

    Article  Google Scholar 

  12. K. Anuar, W. Tan, A. Abdullah, H. Jelas, N. Saravanan, S. Ho, M. Yazid, Oriental J. Chem. 25, 813 (2009)

    Google Scholar 

  13. K. Anuar, M. Rosli, S. Ho, Int. J. Chem. Res. 3, 21 (2011)

    Article  Google Scholar 

  14. P. Agbo, P. Nwofe, R. Chikwenze, O. Ozibo, IOSR J. Appl. Phys. 7, 99 (2015)

    Google Scholar 

  15. K. Sharma, D. Sharma, V. Kumar, Optik 182, 519 (2019)

    Article  ADS  Google Scholar 

  16. P. Hankare, A. Manikshete, D. Sathe, P. Chate, Mater. Sci. Mater. Electron. 21, 698 (2010)

    Article  Google Scholar 

  17. G. Hodes, Chemical solution deposition of semiconductor films (Marcel Dekker Inc., New York, 2003)

    Google Scholar 

  18. C. Lokhande, P. Patil, H. Tributsch, A. Ennaoui, Sol. Ener. Mater. Sol. Cells 55, 379 (1998)

    Article  Google Scholar 

  19. P. Hankare, P. Chate, S. Delekar, M. Asabe, I. Mulla, J. Phys. Chem. Solids 67, 2310 (2006)

    Article  ADS  Google Scholar 

  20. P. Hankare, B. Jadhav, K. Garadkar, P. Chate, I. Mulla, S. Delekar, J. Alloys Compd 490, 228 (2010)

    Article  Google Scholar 

  21. N. Umeyama, M. Tokumoto, S. Yagi, M. Tomura, K. Tokiwa, T. Fujii, R. Toda, N. Miyakawa, S. Ikeda, Jpn. J. Appl. Phys. 51, 053001 (2012)

    Article  ADS  Google Scholar 

  22. A. Kassim, M. Rosli, H. Min, Inter. J. Chem. Res. 3, 21 (2011)

    Article  Google Scholar 

  23. S. Ikhmayies, R. Ahmad-Bitar, J. Mater. Res. Technol. 2, 221 (2013)

    Article  Google Scholar 

  24. K. Aly, A. Elnaeim, M. Uosif, O. Abdel-Rahim. Physica B 406, 4227 (2011)

    Article  ADS  Google Scholar 

  25. D. Sonavane, S. Jare, R. Survawanshi, R. Kathare, R. Bulakhe. Int. Res. J Sci Eng A2, 61 (2018)

    Google Scholar 

Download references

Funding

The authors would like to thank to the University of Mumbai, Mumbai, for financial support for this project (Research Project No. 62 of 2012-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chate, P.A., Sathe, D.J. & Hake, S.L. Nickel selenide thin films: opto-electric and thermoelectric properties. Appl. Phys. A 128, 904 (2022). https://doi.org/10.1007/s00339-022-06064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06064-0

Keywords

Navigation