Skip to main content
Log in

Surface quality and laser-damage behaviour of chemo-mechanically polished CaF2 single crystals characterized by scanning electron microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A significant increase in the ultraviolet laser-damage threshold of CaF2 (1 1 1) single-crystal surfaces after surface finishing by chemomechanical polishing (CMP) with colloidal silica has been demonstrated as compared to conventional mechanical-abrasive polishing (MAP). It was shown that CMP yields an up to 12-fold increase of the damage threshold fluence up to Fth = 30 J cm−2 for 1-on-1 nanosecond pulses of 248 and 193 nm excimer laser irradiation. Even after 5-on-1 irradiations, the damage threshold remains as high as Fth = 15 J cm−2 in the case of CMP. For both polishing procedures, the change in dielectric surface properties has been characterized by means of scanning electron microscopy (SEM) using electron beam-induced charge-up phenomena. These were mainly detected by the variation of emitted secondary electron (SE) yield δSE depending on the primary electron (PE) energy. Two kinds f charge-up phenomena were employed: (i) the onset or vanishing of statistically fluctuating SE yield bursts during slow-scan imaging (“stripe pattern” method), and (ii) the temporal decay of the electron beam-induced charge-up inside an electrically conducting mask (charge decay method). Both these phenomena disappeared after CMP. It is concluded that this disappearance results from removing the subsurface damage layer which is typical of MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Negishi, A. Deguchi, M. Ando, M. Takimoto and N. Nakamura, Nanotechnology 8 (1995) 139.

    Google Scholar 

  2. T. W. Walker, A. H. Guenther and P. E. Nielsen, IEEE J. Quantum Electr. QE-17 (1981) 2053.

    Google Scholar 

  3. R. Boland, J. Newcomb and A. Turner, Proc. SPIE Int. Soc. Opt. Eng. 2536 (1995) 288.

    Google Scholar 

  4. H.-J. Heimbeck, Opt. Eng. 34 (1995) 2719.

    Google Scholar 

  5. T. Kasai, K. Horio, T. Yamazaki, M. Komoda, T. K. Doy and N. Kubo, J. Non-Cryst. Solids 177 (1994) 397.

    Google Scholar 

  6. S. Rotter, U. Lachish and U. El-hanany, J. Cryst. Growth 73 (1985) 187.

    Google Scholar 

  7. G. J. Pietsch, Y. J. Chabal and G. S. Higashi, J. Appl. Phys. 78 (1995) 1650.

    Google Scholar 

  8. R. R. Turk, J. A. Harrington, J. Johnston, C. Haeussler and R. L. Joyce, Appl. Optics 18 (1979) 957.

    Google Scholar 

  9. J. W. Davisson, J. Mater. Sci. 9 (1974) 1701.

    Google Scholar 

  10. R. Jairath, J. Farkas, C. K. Huang, M. Stell and S.-M. Tzeng, Solid State Technol. 34 (7) (1994) 71.

    Google Scholar 

  11. J. Haisma, B. A. C. M. Spierings, U. K. P. Bierman and A. A. Van gorkum, Appl. Optics 33 (1994) 1154.

    Google Scholar 

  12. G. Ringel, F. Kratz, D.-R. Schmitt, J. Mangel-sdorf, F. Creuzer and J. Garratt, Proc. SPIE Int. Soc. Opt. Eng. 2536 (1995) 317.

    Google Scholar 

  13. Y. Zheng, ibid. 2544 (1995) 157.

    Google Scholar 

  14. W. Gutmannsbauer, H. J. Hug and E. Meyer, Microelectron. Eng. 32 (1996) 389.

    Google Scholar 

  15. D.-R. Schmitt, Precis. Eng. 13 (1990) 203.

    Google Scholar 

  16. P. D. Warren, C. Pecorari, O. V. Kolosov, S. G. Roberts and G. A. D. Briggs, Nanotechnology 7 (1996) 295.

    Google Scholar 

  17. R. G. Bommakanti and T. S. Sudarshan, J. Appl. Phys. 67 (1990) 6991.

    Google Scholar 

  18. T. Ichinokawa, M. Iiyama, A. Onoguchi and T. Kobayashi, Jpn. J. Appl. Phys. 13 (1974) 1272.

    Google Scholar 

  19. L. Reimer, U. Golla, R. BÖngeler, M. KÄssens, B. Schindler and R. Senkel, Optik 92 (1992) 14.

    Google Scholar 

  20. G. F. Vander voort, Z. Materialogr. 2 (1992) 3.

    Google Scholar 

  21. S. Laffey, M. Hendrickson and J. R. Vig, in Proceedings of the 16th Piezoelectric Device Conference”, Vol. 1, Kansas City, Sept 1994 (Electron Industries Association, Washington DC 1994) p. 95.

    Google Scholar 

  22. B. Dietrich, E. FÖrster and R. BÖttger, Kristall Technik 12 (1977) 609.

    Google Scholar 

  23. R. A. Schwarzer, Mater. Sci. Forum 157/162 (1992) 187.

    Google Scholar 

  24. K. E. Puttick, L. C. Whitmore, C. L. Chao and A. E. Gee, Philos. Mag. A 69 (1994) 91.

    Google Scholar 

  25. G. KÄstner, D. Hesse, R. Scholz, H. Koch, F. Ludwig, M. Lorenz and H. Kittel, Physica C 243 (1995) 281.

    Google Scholar 

  26. R. C. Alig and S. Bloom, J. Appl. Phys. 49 (1978) 3476.

    Google Scholar 

  27. J. P. Ganachaud and A. Mokrani, Surf. Sci. 334 (1995) 329.

    Google Scholar 

  28. Y. Ishibashi, T. Kodama, H. Oiwa and Y. Uchikawa, Scanning 14 (1992) 219.

    Google Scholar 

  29. J. Cazaux, K. H. Kim, O. Jbara and G. Salace, J. Appl. Phys. 70 (1991) 960.

    Google Scholar 

  30. R. D. Van veld and T. J. Shaffner, in “Proceedings of the 4th Annual Scanning Electron Microscope Symposium”, Part I, edited byOm Johari and Irene Corvin (ITT Research Institute, Chicago, IL 1971) p. 17.

    Google Scholar 

  31. V. T. Jordanov and G. F. Knoll, IEEE Trans. Nucl. Sci. 42 (1995) 683.

    Google Scholar 

  32. H. Rickert, Angew. Chem. 90 (1978) 38.

    Google Scholar 

  33. R. W. Fathauer and L. J. Schowalter, Appl. Phys. Lett. 45 (1984) 519.

    Google Scholar 

  34. B. Gross and L. N. De oliveira, J. Appl. Phys. 45 (1974) 4724.

    Google Scholar 

  35. H.-J. Fitting, Phys. Status Solidi (a) 26 (1974) 525.

    Google Scholar 

  36. H. Johansen, S. Gogoll, E. Stenzel, M. Reichling and E. Matthias, Scanning 1 9 (1997) 416.

    Google Scholar 

  37. R. L. Webb, L. C. Jensen, S. C. Langford and J. T. Dickinson, J. Appl. Phys. 74 (1993) 2323.

    Google Scholar 

  38. S. Gogoll, E. Stenzel, H. Johansen, M. Reichling and E. Matthias, Nucl. Instrum. Meth. Phys. Res. B 116 (1996) 279.

    Google Scholar 

  39. J. P. Vigouroux, J. P. Duraud, A. Le moel, C. Le Gressus and D. L. Griscom, J. Appl. Phys. 57 (1985) 5139.

    Google Scholar 

  40. K. F. J. Heinrich, “Electron Beam X-Ray Microanalysis” (Van Nostrand Reinhold, New York, NY 1981).

    Google Scholar 

  41. H. Seiler, Z. Angew. Phys. 22 (1967) 249.

    Google Scholar 

  42. H. Johansen, S. Gogoll, E. Stenzel and M. Reichling, Phys. Status Solidi (a) 150 (1995) 613.

    Google Scholar 

  43. T. S. Sudarshan and J. Wang, IEEE Trans. Electr. Insul. 27 (1992) 1127.

    Google Scholar 

  44. E. D. Palik, J. W. Gibson and R. T. Holm, Surface Sci. 84 (1979) 164.

    Google Scholar 

  45. Y. Li, M. Yasuda and T. Takada, IEEE Trans. Dielectr. Insul. 1 (1994) 188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansen, H., Kastner, G. Surface quality and laser-damage behaviour of chemo-mechanically polished CaF2 single crystals characterized by scanning electron microscopy. Journal of Materials Science 33, 3839–3848 (1998). https://doi.org/10.1023/A:1004695217861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004695217861

Keywords

Navigation