Skip to main content
Log in

Large Fluctuations in Multiattractor Systems and the Generalized Kramers Problem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The main subject of the paper is an escape from a multiwell metastable potential on the timescale of the formation of the quasiequilibrium between the wells. Our main attention is devoted to such ranges of friction in which an external saddle does not belong to a basin of attraction of an initial attractor. A complete rigorous analysis of the problem for the most probable escape path is presented and a corresponding escape rate is calculated with a logarithmic accuracy. Unlike a conventional rate for a quasistationary flux, the rate on shorter timescales strongly depends on friction, moreover, it may undergo oscillations in the underdamped range and a cutoff in the overdamped range. A generalization of the results for interattractor transitions in stable potentials with more than two wells is also presented, and a splitting procedure for a phenomenological description of interattractor transitions is suggested. Applications to such problems as the dynamics of escape on timescales shorter than an optimal fluctuation duration, the prehistory problem, the optimal control of fluctuations, fluctuational transport in ratchets, escapes at a periodic driving, and transitions in biased Josephson junctions and ionic channels are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Landauer, in Noise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989), Vol. 1, p. 1.

    Google Scholar 

  2. H. A. KramersPhysica 7:284 (1940).

    Google Scholar 

  3. L. Pontryagin, A. Andronov, and A. Vitt, Zh. Eksp. Teor. Fiz. 3:165 (1933); see the English translation in Noise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989), Vol. 1, p. 329.

    Google Scholar 

  4. S. Arrhenius, Z. Phys. Chem (Leipzig) 4:226 (1889).

    Google Scholar 

  5. P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62:251 (1990).

    Google Scholar 

  6. V. I. Mel'nikov, Phys. Rep. 209:1 (1991).

    Google Scholar 

  7. V. I. Mel'nikov, Sov. Phys. JETP 60:380 (1984).

    Google Scholar 

  8. V. Privman and H. L. Frisch, J. Chem. Phys. 94:8216 (1991).

    Google Scholar 

  9. V. A. Schneidman, Phys. Rev. E 56:5257 (1997).

    Google Scholar 

  10. S. M. Soskin et al., in Unsolved Problems of Noise, D. Abbot, ed. (American Institute of Physics, in press); S. M. Soskin, V. I. Sheka, T. L. Linnik et al., in Stochaos: Stochastic and Chaotic Dynamics in the Lakes, D. S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, and T. Mullin, eds. (American Institute of Physics, Woodbury, NY, in press).

  11. M. I. Freidlin and A. D. Wentzell, Random Perturbations in Dynamical Systems (Springer-Verlag, New York, 1984).

    Google Scholar 

  12. L. Onsager and S. Muchlup, Phys. Rev. 91:1505 (1953); S. Muchlup and L. Onsager, Phys. Rev. 91:1512 (1953).

    Google Scholar 

  13. R. P. Feinman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  14. A. D. Wentzell and M. I. Freidlin, Russ. Math. Surveys 25:1 (1970).

    Google Scholar 

  15. M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks, Nuovo Cimento D 17:661 (1995).

    Google Scholar 

  16. A. R. Bulsara and L. Gamaitoni, Phys. Today (March 1996) 39.

  17. M. Magnasco, Phys. Rev. Lett. 71:1477 (1993).

    Google Scholar 

  18. R. Astumian and M. Bier, Phys. Rev. Lett. 72:1766 (1994).

    Google Scholar 

  19. J. Prost, J. Chauwin, L. Peliti, and A. Adjari, Phys. Rev. Lett. 72:2652 (1994).

    Google Scholar 

  20. C. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72:2984 (1994).

    Google Scholar 

  21. D. R. Chialvo and M. M. Millonas, Phys. Lett. A 209:21 (1995).

    Google Scholar 

  22. M. I. Dykman, H. Rabitz, V. N. Smelyanskiy, and B. E. Vugmeister, Phys. Rev. Lett. 79:1178 (1997).

    Google Scholar 

  23. V. N. Smelyanskiy and M. I. Dykman, Phys. Rev. E 55:2516 (1997).

    Google Scholar 

  24. B. E. Vugmeister and H. Rabitz, Phys. Rev. E 55:2522 (1997).

    Google Scholar 

  25. B. J. Matkowsky and Z. Schuss, SIAM J. Appl. Math. 33:365 (1977).

    Google Scholar 

  26. R. Graham and T. Tel, Phys. Rev. A 33:1322 (1986).

    Google Scholar 

  27. P. Talkner, Z. Phys. B 68:201 (1987).

    Google Scholar 

  28. R. S. Maier and D. L. Stein, Phys. Rev. Lett. 71:1783 (1993).

    Google Scholar 

  29. R. S. Maier and D. L. Stein, J. Stat. Phys. 83:291 (1996).

    Google Scholar 

  30. M. I. Dykman and M. A. Krivoglaz, Sov. Phys. JETP 50:30 (1979).

    Google Scholar 

  31. R. L. Kautz, Phys. Rev. A 38:2066 (1988).

    Google Scholar 

  32. A. J. McKane, A. J. Bray, and H. C. Luckock, Phys. Rev. A 41:644 (1990).

    Google Scholar 

  33. M. I. Dykman, Phys. Rev. A 42:2020 (1990).

    Google Scholar 

  34. M. I. Dykman, P. V. E. McClintock, V. N. Smelyanski, N. D. Stein, and N. G. Stocks, Phys. Rev. Lett. 68:4547 (1992).

    Google Scholar 

  35. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 6th ed. (North-Holland, Amsterdam, 1990).

    Google Scholar 

  36. H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  37. L. E. Elsgolc, Calcalus of Variations (Pergamon Press, London, 1961).

    Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, London, 1976).

    Google Scholar 

  39. R. Graham, D. Roekaerts, and T. Tel, Phys. Rev. A 31:3364 (1985).

    Google Scholar 

  40. R. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Google Scholar 

  41. A. D. Hibbs, A. L. Singsaas, E. W. Jacobs, A. R. Bulsara, J. J. Bekkedahl, and F. Moss, J. Appl. Phys. 77:2582 (1995).

    Google Scholar 

  42. I. Kh. Kaufman, D. G. Luchinsky, P. V. E. McClintock, S. M. Soskin, and N. D. Stein, Phys. Rev. E 57:78 (1998).

    Google Scholar 

  43. M. I. Dykman, M. M. Millonas, and V. N. Smelyanskiy, Phys. Lett. A 195:53 (1994).

    Google Scholar 

  44. M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J. Chem. Phys. 100:5735 (1994).

    Google Scholar 

  45. N. N. Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillators (Gordon and Breach, New York, 1961).

    Google Scholar 

  46. S. M. Soskin, Physica A 155:401 (1989).

    Google Scholar 

  47. V. I. Mel'nikov, Sov. Phys. JETP 61:855 (1985).

    Google Scholar 

  48. S. M. Soskin, Phys. Rev. E 50:R44 (1994).

    Google Scholar 

  49. D. G. Luchinsky, P. V. E. McClintock, S. M. Soskin, and R. Mannella, Phys. Rev. Lett. 76:4453 (1996).

    Google Scholar 

  50. R. Mannella, S. M. Soskin, and P. V. E. McClintock, Global bifurcations in periodically driven zero-dispersion systems and problem of large fluctuations, unpublished.

  51. B. E. Vugmeister, J. Botina, and H. Rabitz, Phys. Rev. E 55:5338 (1997).

    Google Scholar 

  52. O. M. Yevtushenko and K. Richter, Phys. Rev. B 57:14839 (1998).

    Google Scholar 

  53. E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss, Phys. Rev. A 26:2805 (1982).

    Google Scholar 

  54. H. D. Vollmer and H. Risken, Z. Phys. B 52:159 (1983).

    Google Scholar 

  55. P. Jung and H. Risken, Z. Phys. B 54:357 (1984).

    Google Scholar 

  56. B. Hille, Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, 1992).

    Google Scholar 

  57. R. S. Eisenberg, J. Membrane Biol. 150:1 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soskin, S.M. Large Fluctuations in Multiattractor Systems and the Generalized Kramers Problem. Journal of Statistical Physics 97, 609–676 (1999). https://doi.org/10.1023/A:1004663224988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004663224988

Navigation