Skip to main content
Log in

A numerical analysis of failure characteristics of ductile layers in laminated composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the failure of the ductile layers from collinear, multiple and delaminating cracks that occur in laminated composite systems was studied using a constitutive relationship that accounts for strength degradation resulting from the nucleation and growth of voids. The results indicate that, in laminated composites, void nucleation and growth ahead of the cracks occur at a much faster rate because of evolution of much higher stress values in the interface region. Except for short crack extensions, collinear and multiple cracks develop crack resistance curves similar to that seen for a crack in the ductile layer material as a homogenous isotropic cases. For delaminating crack cases, the fracture behaviour is strongly influenced by the delamination length. The resistance of the ductile layers to crack extension can be significantly reduced by short delamination lengths; however, for large delamination lengths the resistance to crack extension becomes greater than that seen for the ductile material. The results also show that, if the crack tip is at the interface, similar maximum stress values develop in the ductile layers as in the fracture test of the same ductile material, suggesting that ductile–brittle fracture transition behaviour of the ductile layers is dependent upon the extent of the cracks in the brittle layers and fracture characteristics of the brittle layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Beals and V. C. Nardone, J. Mater. Sci. 29 (1994) 2526.

    Google Scholar 

  2. L. Shaw and R. Abbaschian, Acta Metall. Mater. 42 (1994) 213.

    Google Scholar 

  3. H. C. Cao, B. J. Dalglesih, H. Dave, C. Elliot, A. G. Evans, R. Mehrabian and G. R. Odette, ibid. 38 (1990) 2969.

    Google Scholar 

  4. V. V. Krstic, P. S. Nicholson and R. G. Hoagland, J. Amer. Ceram. Soc. 64 (1981) 499.

    Google Scholar 

  5. J. Kajuch, J. Short and J. J. Lewandowski, Acta Metall. Mater. 43 (1995) 1955.

    Google Scholar 

  6. L. Xiao and R. Abbaschian, Metall. Trans. 24A (1992) 403.

    Google Scholar 

  7. T. C. Lu, A. G. Evans, R. J. Hect and R. Mehrabian, Acta Metall. Mater. 39 (1991) 1853.

    Google Scholar 

  8. W. O. Soboyejo, F. Ye, L.-C. Chen, N. Bahtishi, D. S. Schwartz and R. J. Lederich, Acta Mater. 44 (1996) 2027.

    Google Scholar 

  9. J. Kajuch, J. D. Rigney and J. J. Lewandowski, Mater. Sci. Engng A115 (1992) 59.

    Google Scholar 

  10. C. K. Syn, S. Stoner, D. R. Lesuer and O. D. Sherby, in “High performance metal and ceramic composites”, edited byK. Upadhya (Metallurgical society of AIME, Warrendale, PA 1994) p. 125.

    Google Scholar 

  11. W. H. Hunt Jr, T. M. Osman and J. J. Lewandowski, J. Metals 45 (1993) 30.

    Google Scholar 

  12. M. Bannister, H. Shercliff, G. Bao, F. Zok and M. F. Ashby, Acta Metall. Mater. 40 (1992) 1531.

    Google Scholar 

  13. A. G. Evans and R. McMeeking, Acta Metall. Mater. 34 (1986) 241.

    Google Scholar 

  14. S. B. Biner, Mater. Sci. Engng. A187 (1994) 125.

    Google Scholar 

  15. Ravichandran, Acta Metall. Mater. 40 (1992) 1009.

    Google Scholar 

  16. Budinasky, J. C. Amazigo and A. G. Evans, J. Mech. Phys. Solids 36 (1988) 167.

    Google Scholar 

  17. F. Erdogan and P. F. Joseph, J. Amer. Ceram. Soc. 72 (1989) 262.

    Google Scholar 

  18. A. L. Gurson, PhD thesis, Brown University (1975).

  19. Idem., J. Eng. Mater. Technol. 99 (1977) 2.

    Google Scholar 

  20. V. Tvergaard, Int. J. Fract. 17 (1981) 389.

    Google Scholar 

  21. Idem., ibid. 18 (1982) 237.

  22. V. Tvergaard and A. Needleman, Acta Metall. Mater. 32 (1988) 157.

    Google Scholar 

  23. C. C. Chu and A. Needleman, J. Engng Mater. Technol. 102 (1980) 249.

    Google Scholar 

  24. V. Tvergaard, Acta Metall. Mater. 38 (1990) 185.

    Google Scholar 

  25. B. Moran and C. F. Shih, Engng Fract. Mech. 27 (1987) 615.

    Google Scholar 

  26. R. O. Ritchie, J. F. Knott and J. R. Rice, J. Mech. Phys. Solids 21 (1973) 395.

    Google Scholar 

  27. A. W. Thompson and J. F. Knott, Metall. Trans. A24 (1993) 523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biner, S.B. A numerical analysis of failure characteristics of ductile layers in laminated composites. Journal of Materials Science 33, 3953–3963 (1998). https://doi.org/10.1023/A:1004644728764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004644728764

Keywords

Navigation