Skip to main content
Log in

Microstructural Evolution of Alumina Layers on an Al–Cu–Fe Quasicrystal during High-Temperature Oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of a quasicrystal with the nominal compositionAl63Cu25Fe12 was studied around 800°Cin environmental and synthetic air by means of thermogravimetric analysis,electron microscopy, and analytical electron spectroscopy. In an earlyoxidation stage, γ-Al2O3 formed with an orientational relationship tothe quasicrystal. At the oxide–metal interface, γ-Al2O3transformed into large hexagonal shaped α-Al2O3grains. The change in surface morphology indicated that at theoxide–gas interface γ-Al2O3 continued togrow as Θ-Al2O3. Locally the metastable aluminalayer was transformed thoroughly into α-Al2O3,which then continued to grow with a nodular morphology. On top of the oxidenodules, several at.% of Cu2+ were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Google Scholar 

  2. A. P. Tsai, in Physical Properties of Quasicrystals, Z.M. Stadnik, ed. (Springer, Heidelberg, 1999), p. 18.

    Google Scholar 

  3. J. M. Dubois, S. S. Kang, and J. von Stebut, J. Mater. Sci. Lett. 10, 537 (1991).

    Google Scholar 

  4. S. S. Kang, J. M. Dubois, and J. von Stebut, J. Mater. Res. 8, 2471 (1993).

    Google Scholar 

  5. U. Köster, W. Liu, H. Liebertz, and M. Michel, J. Noncrystall. Solids 153-154, 446 (1993).

    Google Scholar 

  6. Y. Yokoyama, A. Inoue, and T. Masumoto, Mater. Trans. JIM 34, 135 (1993).

    Google Scholar 

  7. J. M. Dubois, J. Mater. Res. 8, 38 (1993).

    Google Scholar 

  8. S. Takeuchi, H. Akiyama, N. Naito, T. Shibuya, T. Hashimoto, K. Edagawa, and K. Kimura, J. Noncrystall. Solids 153-154, 353 (1993).

    Google Scholar 

  9. J. M. Dubois, S. S. Kang, and Y. Massiani, J. Noncrystall. Solids 153-154, 443 (1993).

    Google Scholar 

  10. P. Liu, A. H. Stigenberg, and J.-O. Nilsson, Acta Metall. Mater. 43, 2881 (1995).

    Google Scholar 

  11. P. J. Pinhero, J. W. Anderegg, D. J. Sordelet, M. F. Besser, and P. A. Thiel, Phil. Mag. B 79, 91 (1999).

    Google Scholar 

  12. S. L. Chang, J. W. Anderegg, and P. A. Thiel, J. Noncrystall. Solids 195, 95 (1996).

    Google Scholar 

  13. P. J. Pinhero, S. L. Chang, J. W. Anderegg, and P. A. Thiel, Phil. Mag. B 75, 271 (1997).

    Google Scholar 

  14. M. Gavatz, D. Rouxel, D. Claudel, P. Pigeat, B. Weber, and J. M. Dubois, Proc. 6th Intern. Conf. Quasicrystals, S. Takeuchi and T. Fujiwara, eds. (World Scientific, Singapore, 1998), p. 765.

    Google Scholar 

  15. S. L. Chang, C. M. Zhang, C. J. Jenks, J. W. Anderegg, and P. A. Thiel, Surf. Sci. 337, 135 (1995).

    Google Scholar 

  16. S. S. Kang and J. M. Dubois, J. Mater. Res. 10, 1071 (1995).

    Google Scholar 

  17. D. J. Sordelet, L. A. Gunderman, M. F. Besser, and A. B. Akinc, in New Horizons in Quasicrystals: Research and Application, A. I. Goldman et al., eds. (World Scientific, Singapore, 1997), p. 296.

    Google Scholar 

  18. H. Saalfeld, Clay Min. Bull. 3, 249 (1958).

    Google Scholar 

  19. G. Yamaguchi, I. Yasui, and W. Ch. Chiu, Bull. Chem. Soc. Jpn. 43, 2487 (1970).

    Google Scholar 

  20. M. L. Kronberg, Acta. Metall. 5, 507 (1957).

    Google Scholar 

  21. F. Faudot, Ann. Chim. Fr. 18, 445 (1993).

    Google Scholar 

  22. S. Ebalard and F. Spaepen, J. Mater. Res. 4, 39 (1989).

    Google Scholar 

  23. A. Le Lann and J. Devaud, J. Phys. I 5, 129 (1995).

    Google Scholar 

  24. L. Fiermans, R. Hoogewijs, and J. Vennik, Surf. Sci. 47, 1 (1975).

    Google Scholar 

  25. M. Scrocco, Chem. Phys. Lett. 63, 52 (1979).

    Google Scholar 

  26. A. Rosencwaig and G. K. Wertheim, J. Electron Spectrosc. Related Phenomena 1, 493 (1973).

    Google Scholar 

  27. B. Wallbank, C. E. Johnson, and I. G. Main, J. Electron Spectrosc. Related Phenomena 4, 263 (1974).

    Google Scholar 

  28. G. C. Wood and B. Chattopadhyay, Corros. Sci. 10, 471 (1970).

    Google Scholar 

  29. J. Doychak, J. Smialek, and T. E. Mitchell, Metall. Trans. A 20, 499 (1989).

    Google Scholar 

  30. J. L. Smialek and R. Gibala, Metall. Trans. A 14, 2143 (1983).

    Google Scholar 

  31. E. Schumann, G. Schnotz, K. P. Trumble, and M. Rühle, Acta Metall. Mater. 40, 1311 (1992).

    Google Scholar 

  32. W. T. Donlon, T. E. Mitchell, and A. H. Heuer, J. Mater. Sci. 17, 1389 (1982).

    Google Scholar 

  33. G. C. Rybicki and J. L. Smialek, Oxid. Met. 31, 275 (1989).

    Google Scholar 

  34. E. J. Felten and F. S. Pettit, Oxid. Met. 10, 189 (1976).

    Google Scholar 

  35. B. I. Wehner, Ph.D. Thesis, University of Dortmund, Dortmund, Germany, 1998, published VDI-Verlag, Düsseldorf, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehner, B.I., Köster, U. Microstructural Evolution of Alumina Layers on an Al–Cu–Fe Quasicrystal during High-Temperature Oxidation. Oxidation of Metals 54, 445–456 (2000). https://doi.org/10.1023/A:1004638501387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004638501387

Navigation