Skip to main content
Log in

Solidification behaviour of Al–7% Si–0.3% Mg during rotary spray forming

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solidification behaviour of an Al–7% Si–0.3% Mg alloy during rotary spray forming was studied. The ability to form a coating was insensitive to the thermal processing parameters, yielding material exchangess greater than 90%. The level of porosity varied typically between 1.5 and 4.75%. The dendrite arm spacing was evaluated and used to estimate the cooling rates. Typical dendrite secondary arm spacings were of the order of 3 μm, 12 μm and 25 μm, corresponding to cooling rates of 4630 K s−1, 72 K s−1 and 8 K s−1, respectively. The fraction primary precipitation was experimentally determined and the partition coefficient calculated indirectly using the Scheil equation. The partition coefficient is increased during rotary spray forming. This is explained by the presence of trapped vacancies at the solidification front. The vacancies change the solid's free energy and thus change the phase diagram and the partition coefficient. A simplistic analysis of entrapment and condensation of vacancies and their influence on the partition coefficient is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. E. Singer, J. Inst. Metals 100 (1972) 185.

    Google Scholar 

  2. Idem., Mater. Sci. Engng A135 (1991) 185.

    Google Scholar 

  3. E. J. Lavernia, E. M. Guiterrez-miravete, J. Szekely and N. J. Grant, Int. J. Rapid Solidification 4 (1988) 89.

    Google Scholar 

  4. E. M. Guiterrez-miravete, E. J. Lavernia, G. M. Trapaga and J. Szekely, ibid. 4 (1988) 125.

    Google Scholar 

  5. E. M. Guiterrez-miravete, E. J. Lavernia, G. M. Trapaga, J. Szekely and N. J. Grant, Metall. Trans. A 2 0 (1989) 71.

    Google Scholar 

  6. X. Zeng, H. Liu, M. G. Chu and E. J. Lavernia, ibid. 23 (1992) 3394.

    Google Scholar 

  7. X. Zeng, H. Liu and E. J. Lavernia, in “Metal matrix composites”, Vol. 1, Proceedings of Ninth International Conference on Composite Materials, edited byA. Miravete, University of Zaragosa, Zaragosa, Spain (1993).

    Google Scholar 

  8. A. E. W. Jarfors, in “Spray processing”, Proceedings of the Sefström Symposium, Royal Institute of Technology, Department of Metallurgy 1994, pp. 305–324.

  9. A. E. W. Jarfors, Journal of Materials Processing 71 (1997) pp. 440–455.

    Google Scholar 

  10. German Patent 116, 698–1899 (1899).

  11. German Patent 24, 460–1882 (1882).

  12. E. J. Lavernia and Y. Wu, “Spray atomization and deposition” (Wiley, Chichester, West Sussex 1996).

    Google Scholar 

  13. S. Su, X. Liang, A. Moran and E. J. Lavernia, Int. J. Rapid Solidification 8 (1994) 161.

    Google Scholar 

  14. “Metals handbook”, Volume 8, “Metallography, structures and phase diagrams” (8th Edn 1973) pp. 396–397.

  15. N. El-mahallawy, M. Taha and H. Fredriksson, Mater. Sci. Engng A179–A180 (1994) 587.

    Google Scholar 

  16. M. Haddad-sabzevar and H. Fredriksson, Metall. Trans. (1998) in press.

  17. S. Berg, J. DahlstrÖm and H. Fredriksson, Iron Steel Inst. Jpn. Int. 35 (1995) 876.

    Google Scholar 

  18. T. Imura, H. Saka, T. Kobayashi, N. Kawabe, A. Sakai and H. Suga, Mem. Facul. Engng, Nagoya Univ. 39 (1987) 195.

    Google Scholar 

  19. H. Fredriksson and U. Åkerlind, Unpublished work (1996).

  20. T. Gorecki, Ber. Bunsenges. Phys. Chem. 87 (1983) 801.

    Google Scholar 

  21. W. M. Lomer, “Vacancies and other point defects in metals and alloys” (Institute of Metals, London 1958) p. 79.

    Google Scholar 

  22. F. W. Schapink, Phil. Mag. 12 (1965) 1055.

    Google Scholar 

  23. D. Altenpohl, “Aluminium viewed from within” (Aluminium-Verlag, Düsseldorf 1982) p. 74.

    Google Scholar 

  24. C. De W. Van siclen and W. G. Wolfer, Acta Metall. Mater. 49 (1992).

  25. G. F. Bolling and D. Fainstein, Phil. Mag. 25 (1972) 45.

    Google Scholar 

  26. E. A. Brandes and G. B. Brook (eds), “Smithell's metals reference book”, Butterworth—Heinemann, Oxford, 7th Edn, (1992).

    Google Scholar 

  27. E. Ozawa and H. Kimura, Acta Metall. 18 (1970) 995.

    Google Scholar 

  28. V. Heine and Hafner, in “Proceedings of the Conference on Many-Atom Interactions in Solids”, edited byR. M. Nieminen, M. J. Puska and M. J. Manninen, Pajulahti, 5–9 June (1989) pp. 12–31.

  29. M. J. Aziz, Metall. Trans. A 27 (1996) 671.

    Google Scholar 

  30. M. J. Aziz and T. Kaplan, Acta Metall. 36 (1988) 2335.

    Google Scholar 

  31. K. A. Jackson, G. H. Gilmer and D. E. Temkin, Phys. Rev. Lett. 75 (1995) 2530.

    Google Scholar 

  32. W. J. Boettinger and M. J. Aziz, Acta Metall. 37 (1989) 3379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarfors, A.E.W. Solidification behaviour of Al–7% Si–0.3% Mg during rotary spray forming. Journal of Materials Science 33, 3907–3918 (1998). https://doi.org/10.1023/A:1004632326038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004632326038

Keywords

Navigation