Skip to main content
Log in

Corrosion Protection of Low-Nickel Austenitic Stainless Steel by Yttrium and Erbium-Ion Implantation Against Isothermal Oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The beneficial effect of ion-implanted yttrium and erbium on the oxidation behavior of low-nickel austenitic stainless steel (LNiSS) at 973 K has been investigated up to 500 hr of oxidation test in air. The resulting oxide scales were examined by a wide range of experimental techniques, including SEM/EDS, XRD, and EPMA. The results indicate that both reactive elements have similar effects. The most significant effects have been to significantly reduce the corrosion rate and to improve the oxide scale adhesion. It is concluded that ion implantation is a powerful tool as surface-modification process introducing reactive elements in the top surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Stringer, Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

  2. Y. Saito, B. Onay, and T. Maruyama, J. Phys. IV 3, 217 (1993).

    Google Scholar 

  3. K. Przybylski and G. J. Yurek, Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  4. J. Stringer, A. Z. Hed, G. Wallwork, and B. A. Wilcox, Corros. Sci. 12, 625 (1972).

    Google Scholar 

  5. H. Pfeiffer, Werkst. Korros. 8, 574 (1957).

    Google Scholar 

  6. C. Giggins, B. Kear, F. S. Pettit, and J. K. Tien, Metallur. Trans. 5, 1685 (1975).

    Google Scholar 

  7. M. F. Stroosnijder, M. J. Bennett, V. Guttmann, J. F. Norton, and J. H. W. de Wit, Oxid. Met. 35, 19 (1991).

    Google Scholar 

  8. K. Przybylski, Mater. Sci. Eng. A121, 509 (1989).

    Google Scholar 

  9. M. F. Stroosnijder, M. J. Cristóbal, and J. D. Sunderkotter, Mater. Sci. Forum 251-254, 259 (1997).

    Google Scholar 

  10. M. F. Stroosnijder, Surf. Coat. Technol. 100-101, 196 (1998).

    Google Scholar 

  11. J. M. Hampikian and D. I. Potter, Oxid. Met. 38, 125 (1992).

    Google Scholar 

  12. T. A. Crabb, P. N. Gibson, and E. MacAlpine, Corros. Sci. 35, 1541 (1993).

    Google Scholar 

  13. M. J. Bennett, H. E. Bishop, P. R. Chalker, and A. T. Tuson, Mater. Sci. Eng. 90, 177 (1987).

    Google Scholar 

  14. S. Seal, S. K. Bose, and S. K. Roy, Oxid. Met. 41, 139 (1994).

    Google Scholar 

  15. S. Chevalier, G. Bonnet, P. Dufour, and J. P. Larpin, Surf. Coat. Technol. 100-101, 208 (1998).

    Google Scholar 

  16. F. J. Pérez, E. Otero, M. P. Hierro, C. Gómez, F. Pedraza, J. L. de Segovia, and E. Román, Surf. Coat. Technol. 108-109, 127 (1998).

    Google Scholar 

  17. J. Fernandez del Castillo, J. Botella, and F. Fernandez, European Patent Application EP 0694626 A1.

  18. R. Sanchez, J. Botella, J. L. Martos, and F. Fernandez, Processes & Materials, Innovation Stainless Steel, Vol. 2 (Asociazione Italiana di Metalurgia, Milano, Italy, 1993), p. 2231.

    Google Scholar 

  19. J. Botella, C. Merino, and E. Otero, Oxid. Met. 49, 297 (1998).

    Google Scholar 

  20. A. J. Armini and S. N. Bunker, Mater. Sci. Eng. A115, 67 (1989).

    Google Scholar 

  21. B. Pieraggi, Oxid. Met. 27, 177 (1987).

    Google Scholar 

  22. W. A. Grant, Nucl. Instr. Meth. 182/183, 809 (1981).

    Google Scholar 

  23. M. J. Cristóbal, M. F. Stroosnijder, and P. N. Gibson, Corros. Sci. 38, 805 (1996).

    Google Scholar 

  24. R. Guillamet, J. Lopitaux, B. Hannoyer, and M. Lenglet, J. Phys. IV C9, 349 (1993).

    Google Scholar 

  25. M. F. Stroosnijder, J. D. Sunderkotter, M. J. Cristóbal, H. Jenett, K. Isenbugel, and M. A. Baker, Surf. Coat. Technol. 83, 205 (1996).

    Google Scholar 

  26. K. Przybylski, A. J. Garrat-Reed, and G. J. Yurek, J. Electrochem. Soc., 135, 509 (1988).

    Google Scholar 

  27. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met., 34, 201 (1990).

    Google Scholar 

  28. D. J. Young and M. Cohen, J. Electrochem. Soc. 124, 769 (1977).

    Google Scholar 

  29. J. L. Smialek, Metallur. Trans. 9A, 309 (1978).

    Google Scholar 

  30. B. A. Pint and L. W. Hobbs, Oxid. Met. 41, 203 (1994).

    Google Scholar 

  31. A. G. Evans, G. B. Cromley, and R. E. Demaray, Oxid. Met. 20, 193 (1983).

    Google Scholar 

  32. V. K. Talpygo and D. R. Clarke, Oxid. Met. 42, 187 (1998).

    Google Scholar 

  33. M. Schütze, Protective Oxide Scale and Their Breakdown, Chap. 5 (Wiley, New York, 1997).

    Google Scholar 

  34. A. L. Marasco and D. J. Young, Oxid. Met. 36, 157 (1991).

    Google Scholar 

  35. D. L. Douglass and F. Rizzo-Assuncao, Oxid. Met. 29, 272 (1998).

    Google Scholar 

  36. F. Gesmundo, C. de Asmundis, G. Battilana, and E. Ruedl, Werkst. Korros. 38, 368 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, F.J., Cristóbal, M.J., Hierro, M.P. et al. Corrosion Protection of Low-Nickel Austenitic Stainless Steel by Yttrium and Erbium-Ion Implantation Against Isothermal Oxidation. Oxidation of Metals 54, 87–101 (2000). https://doi.org/10.1023/A:1004602729629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004602729629

Navigation