Skip to main content
Log in

Multiscale investigation of the creep behaviour of a 2.5D Cf-SiC composition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper deals with some results on the creep behaviour of a 2.5D Cf-SiC composite. This material fabricated by CVI was tested in tension under an argon partial pressure for temperatures ranging from 1273 to 1673 K and stresses between 110 and 220 MPa. Results regarding creep curves (strain-time) and strain rate-time curves tend to confirm the existence of a secondary stage. Damage-stress and damage-time curves are also presented. The limits of the Dorn′s formalism are evidenced as well as the occurrence of a damage process leading to a so-called damage-creep mechanism. In order to explain this macroscopic creep behaviour of the composite, investigations at the mesoscopic, microscopic and nanoscopic scales were necessary. Five modes of matrix microcracking are observed together with different pull-out features regarding the extracted fibre surface. The damage accumulation via matrix microcracking appears to be a time dependent mechanism. Two modes of interfacial sliding are evidenced: at 1473 K and 220 MPa, the pyrocarbon (PyC) interphase is fractured leading to debonding between carbon layers, while at 1673 K, there is a loss of anisotropy of the PyC layer close to the matrix and, thus, an interfacial sliding appearing as a viscous flow. To elucidate the role of the carbon fibres, a nanoscale study via HREM has been conducted. An increase of the mean diameters of the basic structural units (BSUs) and of the areas of local molecular orientation (LMOs) within the fibres has been observed when increasing temperature under 220 MPa. In fact, these changes do not contribute to the macroscopic strain. Therefore, this restructuration effect has been called “nanocreep” of the carbon fibre as it appears to have a negligible contribution to the macroscopic creep behaviour of the 2.5D Cf-SiC composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Boitier, Thèse de Doctorat of the University of Caen, 1997.

  2. A. Dalmaz, Thèse de Doctorat of the INSA of Lyon, 1997.

  3. W. R. Cannon and T. F. Langdon, J. Mater. Sci. 18 (1983) 1.

    Google Scholar 

  4. H. Maupas, D. Kervadec and J. L. Chermant, in Proceedings of the 4th International Symposium on Brittle Matrix Composites, BMC4, Warsaw, September 13–15, 1994, edited by A. M. Brandt, V. C. Li and I. H. Marshall (IKE andWoodhead Pub., Warsaw, 1994) p. 661.

  5. J. L. Chermant, Sil. Ind. 60 (1995) 261.

    Google Scholar 

  6. M. Guigon, Thèse de Doctorat d'Etat, University of Technology of Compiègne, 1985.

  7. F. Christin, R. Naslaun and C. Bernard, in Proceedings of the 7th International Conference on CVD, edited by T. O. Sedwick and H. Lydtin (The Electrochemical Society, Princeton, 1979) p. 499.

    Google Scholar 

  8. M. L. Bouchetou, Thèse de Doctorat of the University of Limoges, 1996.

  9. G. Boitier, H. Maupas, H. CubÉro and J. L. Chermant, Rev. Comp. Mat. Avancés 7 (1997) 143.

    Google Scholar 

  10. G. Boitier, H. CubÉro and J. L. Chermant, in Proceedings of the 3rd International Conference on High Temperature Ceramic Matrix Composites, HT-CMC3, September 6–9, 1998, Osaka, Japan, edited by K. K. Niihara and K. Nakano (CSJ Series, Publications of the Ceramic Society of Japan, 1999) 3 (1999) 309.

  11. G. Sines, Z. Yang and B. D. Vickers, Carbon 27 (1989) 403.

    Google Scholar 

  12. K. Kogure, G. Sines and J. G. Lavin, ibid. 32 (1994) 715.

    Google Scholar 

  13. C. H. Carter, R. F. Davis and J. Bentley, J. Amer. Ceram. Soc. 67 (1984) 732.

    Google Scholar 

  14. L. Kachanov, Izv. Akad. Nauk SSR 8 (1958) 26.

    Google Scholar 

  15. G. Boitier, J. Vicens and J. L. Chermant, J. Mater. Sci. Let. 16 (1997) 1402.

    Google Scholar 

  16. F. AbbÉ, Thèse de Doctorat of the University of Caen, 1990.

  17. J. W. Holmes, J. Mater. Sci. 26 (1991) 1808.

    Google Scholar 

  18. J. N. Adami, Thèse de Doctoratès Sciences Techniques, Ecole Polytechnique F´ed´erale of Zürich (Switzerland), prepared at the Institute for Advanced Materials, Commission of the European Communities, Petten, The Netherlands, 1992.

  19. S. F. Shuler, J. W. Holmes, X. Wu and D. Roach, J. Amer. Ceram. Soc. 76 (1993) 2327.

    Google Scholar 

  20. N. Iyengar and W. Curtin, Acta Mat. 45 (1997) 1489.

    Google Scholar 

  21. Idem., ibid. 45(1997) 3419.

  22. M. Guigon and A. Oberlin, Comp. Sci. Tech. 27 (1986) 1.

    Google Scholar 

  23. W. Watt, D. J. Johnson and E. Parker, in Proceedings of the International Carbon Fibres Conference (The Plastic Institute, London, 1974) p. 3.

    Google Scholar 

  24. V. Serin, R. Fourmeaux, Y. Khin, J. Sevely and M. Guigon, Carbon 28 (1990) 573.

    Google Scholar 

  25. G. Boitier, J. Vicens and J. L. Chermant, Scripta Mat. 38 (1998) 937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boitier, G., Chermant, J.L. & Vicens, J. Multiscale investigation of the creep behaviour of a 2.5D Cf-SiC composition. Journal of Materials Science 34, 2759–2767 (1999). https://doi.org/10.1023/A:1004602528224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004602528224

Keywords

Navigation