Skip to main content
Log in

S-Induced Destabilization of Aluminum Oxide at the Fe(poly)–S–Al2O3 Interface

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Auger measurements reveal that, under UHV conditions, interfacial sulfurinduces the destabilization of an aluminum oxide overlayer at theFe–Al2O3 interface at temperatures above400 K. One monolayer deposition of Al onto Fe/S results in the insertion ofAl at the Fe–S interface. Exposure of Fe–Al–S to oxygenat 300 K gives rise to the complete oxidation of the aluminum adlayer asevidenced by the disappearance of the Al0 Auger signal and thestoichiometric formation of the aluminum oxide. When the resultingFe–S–Al2O3 is annealed progressively tohigher temperatures between 400 and 900 K, analysis of the Auger spectrashows a dramatic decline in the Al/O Auger intensity ratio. This declineis accompanied by the appearance of a small signal due to Al0,which maintains a constant intensity as the total Al signal (due mainly toAl3+) decreases. The appearance of the Al0 Augersignal accompanied by the attenuation of the Al3+ signalsignifies the chemical conversion of Al3+ into Al0,probably followed by diffusion of Al into the bulk. The possibility ofalumina dewetting and island formation, however, cannot be ruled out onthe basis of the present data. In the absence of interfacial sulfur, the alumina–Fe interface is stable to 900 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L Smialek, Metall. Trans. 22A, 739 (1991).

    Google Scholar 

  2. J. L. Smialek, D. T. Jane, J. C. Schaeffer, and W. H. Murphy, Thin Solid Films 253, 285 (1994).

    Google Scholar 

  3. J. D. Kiely, T. Yeh, and D. A. Bonnell, Surface Sci. 393, L126 (1997).

    Google Scholar 

  4. P. Y. Hou, Z. Wang, K. Prüssner, K. B. Alexander, and I. G. Brown, Proc. 3rd Intern. Conf. Microsc. Oxid. (Cambridge, U.K., 1996).

  5. P. Y. Hou and J. Stringer, Oxid. Met. 38, 323 (1992).

    Google Scholar 

  6. H. Cabibil and J. A. Kelber, Surface Sci. 329, 101 (1995).

    Google Scholar 

  7. P. Fox, D. G. Lees, and G. W. Lorimer, Oxid. Met. 36, 491 (1991).

    Google Scholar 

  8. J. A. Kelber, S. G. Addepalli, J.-S. Lin, and H. Cabibil, Proc. Electrochem. Soc. Symp. High Temp. Corros. Mater. Chem., San Diego, CA, 3-5 May, 1998, P. Y. Hou, M. J. McNallan, R. Oltra, E. J. Opila, and D. A Shores, eds. (The Electrochemical Society, 1998), pp. 190-197.

  9. J.-S. Lin, B. Ekstrom, S. G. Addepalli, H. Cabibil, and J. A. Kelber, Langmuir 14, 4843 (1998).

    Google Scholar 

  10. S. G. Addepalli, J.-S. Lin, B. Ekstrom, and J. A. Kelber, Oxid. Met. 52, 139 (1999).

    Google Scholar 

  11. C. G. Walker and M. M. El Gomati, Appl. Surface Sci. 35, 164 (1988-89).

    Google Scholar 

  12. H. J. Grabke, D. Wiemer, and H. Viefhaus, Fresenius J. Anal. Chem. 341, 402 (1991).

    Google Scholar 

  13. F. H. Stott, Rep. Prog. Phys. 50, 861 (1987).

    Google Scholar 

  14. A. W. Funkenbusch, J. Smeggil, and N. S. Bornstein, Metall. Trans. 16A, 1164 (1985).

    Google Scholar 

  15. P. Y. Hou and J. Stringer, J. Phys. IV 3, 231 (1993).

    Google Scholar 

  16. S. Y. Hong, A. B. Anderson, and J. L. Smialek, Surface Sci. 230, 175 (1990).

    Google Scholar 

  17. W. Arabczyk, T. Baumann, H.-J. Mussig, and F. Storbeck, Vacuum 41, 79 (1990).

    Google Scholar 

  18. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed. (Physical Electronics Industries, Eden Prairie, MN, 1979).

    Google Scholar 

  19. M. P. Seah, in Practical Surface Analysis, 2nd edn., Vol. 1: Auger and X-ray Photoelectron Spectroscopy, D. Briggs and M. P. Seah, eds. (Wiley, New York, 1990), pp. 201-255.

    Google Scholar 

  20. V. S. Smentkowski and J. T. Yates, Jr., Surface Sci. 232, 113 (1990).

    Google Scholar 

  21. G. Ertl and K. Wandelt, Surface Sci. 50, 479 (1975).

    Google Scholar 

  22. M. Seo, J. B. Lumsden, and R. W. Staehle, Surface Sci. 50, 541 (1975).

    Google Scholar 

  23. R. Michael, J. Gastaldi, C. Allasia, C. Jourdan, and J. Derren, Surface Sci. 95, 309 (1980).

    Google Scholar 

  24. J. G. Chen, J. E. Crowell, and J. T. Yates, Jr., Phys. Rev. B33, 1436 (1986).

    Google Scholar 

  25. J. Homeny and M. W. Buckley, Mater. Lett. 9, 443 (1990).

    Google Scholar 

  26. C. Argile and G. E. Rhead, Thin Film Growth Modes Monitored by Auger Electron Spectroscopy (Elsevier, New York, 1989), pp. 272-301.

    Google Scholar 

  27. G. Panzner and B. Egert, Surface Sci. 144, 651 (1984).

    Google Scholar 

  28. H. Windawi and J. R. Katzer, J. Vacuum Sci. Technol. A16, 497 (1979).

    Google Scholar 

  29. J. G. Chen, M. I. Colainni, W. H. Weinberg, and J. T. Yates, Jr., Surface Sci. 238, 13 (1990).

    Google Scholar 

  30. J. F. O'Hanlon, User's Guide to Vacuum Technology (Wiley, New York, 1989), p. 448.

    Google Scholar 

  31. R. K. Schulze, T. N. Taylor, and M. T. Paffett, J. Vacuum Sci. Technol. A12, 3054 (1994).

    Google Scholar 

  32. Bond dissociation values are taken from the Handbook of Chemistry and Physics, 74th edn., D. R. Lide, ed. (CRC Press, Boca Raton, FL, 1993), pp. 9y123-9y145.

    Google Scholar 

  33. W. Arabczyk, H.-J. Müssig, and F. Storbeck, Phys. Status Solidi A55, 437 (1979).

    Google Scholar 

  34. E. L. Hardegree, P. Ho, and J. M. White, Surface Sci. 165, 488 (1986).

    Google Scholar 

  35. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell Univ. Press, Ithaca, New York, 1960), pp. 265-309.

    Google Scholar 

  36. S. Addepalli, N. Magtoto, and J. A. Kelber, Surface Sci. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Magtoto, N.P., Addepalli, S. et al. S-Induced Destabilization of Aluminum Oxide at the Fe(poly)–S–Al2O3 Interface. Oxidation of Metals 54, 285–300 (2000). https://doi.org/10.1023/A:1004602412849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004602412849

Navigation