Skip to main content
Log in

Anorthite (CaAl2Si2O8)–aluminum interface: kinetics of high-temperature interactions

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of the anorthite–Al system have been examined by exposing anorthite to pure Al at 850–1150 °C for 0.5–250 h. The interfaces were investigated by electron microscopy (SEM, EDS, EPMA, and TEM). The results showed that Si4+–Al3+ interdiffusion and associated oxygen vacancies plus Ca2+–Al3+ interdiffusion and associated calcium vacancies drove the anorthite → CA2 and the CA2 → A (alumina) transformations, respectively, at 850 and 950 °C. At 1050 and 1150 °C, increased solubilities of silicon and oxygen in the liquid Al resulted in significant formation of CA2, which, when in contact with anorthite, leads to formation of gehlenite. Si4+–Al3+ interdiffusion was identified as the controlling process of the anorthite–Al interactions and so it has been quantified in terms of the activation energy of Q = 112 kJ/mol and the diffusion coefficient pre-factor of D 0 = 4 × 10−8 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Sigma-Aldrich, Sydney, Australia.

  2. This is termed the diffused layer owing to the higher Al/Si ratio relative to intact anorthite.

  3. For all reactions, the oxygen dissolves initially and, after saturation, interacts with Al to form Al2O3; the silicon dissolves initially and, after saturation, precipitates.

  4. The size differences are for crystal radii [35] and the signs are for lattice expansion (+) and shrinkage (−).

References

  1. Adabifiroozjaei E, Koshy P, Pardehkhorram R, Rastkerdar E, Hart J, Sorrell CC (2016) Interfacial reactions between BaAl2Si2O8 and molten Al Alloy at 1423 and 1523 K (1150 A and 1250 A °C). Metall Mater Trans B-Process Metall Mater Process Sci 47(3):1753–1764. doi:10.1007/s11663-016-0642-9

    Article  Google Scholar 

  2. Adabifiroozjaei E, Koshy P, Pardehkhorram R, Rastkerdar E, Sorrell CC (2015) Interfacial reactions between BaAl2Si2O8 and molten Al Alloy at 850 °C. J Am Ceram Soc 98(10):3299–3307. doi:10.1111/jace.13650

    Article  Google Scholar 

  3. Adabifiroozjaei E, Koshy P, Rastkerdar E (2011) Effects of different barium compounds on the corrosion resistance of andalusite-based low-cement castables in contact with molten Al–Alloy. Metall Mater Trans B-Process Metall Mater Process Sci 42(4):901–913. doi:10.1007/s11663-011-9522-5

    Article  Google Scholar 

  4. Adabifiroozjaei E, Koshy P, Rastkerdar E, Sorrell CC (2016) Interfacial reactions between anorthite (CaAl2Si2O8) and Al 7075 Alloy at 850 and 1150 °C. J Am Ceram Soc 99(5):1694–1708. doi:10.1111/jace.14091

    Article  Google Scholar 

  5. Adabifiroozjaei E, Saidi A, Monshi A, Koshy P (2011) Effects of different calcium compounds on the corrosion resistance of andalusite-based low-cement castables in contact with molten Al–Alloy. Metall Mater Trans B-Process Metall Mater Process Sci 42(2):400–411. doi:10.1007/s11663-010-9468-z

    Article  Google Scholar 

  6. Koshy P, Gupta S, Sahajwalla V, Edwards P (2008) Effect of CaF(2) on interfacial phenomena of high alumina refractories with Al Alloy. Metall Mater Trans B-Process Metall Mater Process Sci 39(4):603–612. doi:10.1007/s11663-008-9169-z

    Article  Google Scholar 

  7. Koshy P, Gupta S, Sahajwalla V, Edwards P (2008) Effect of silica on high-temperature interfacial phenomena of monolithic refractories with Al Alloy. Metall Mater Trans B-Process Metall Mater Process Sci 39(2):331–339. doi:10.1007/s11663-008-9138-6

    Article  Google Scholar 

  8. Afshar S, Allaire C (2001) Furnaces: improving low cement castables by non-wetting additives. Jom-J Min Met Mat S 53(8):24–27. doi:10.1007/s11837-001-0130-8

    Article  Google Scholar 

  9. Afshar S, Allaire C (1996) The corrosion of refractories by molten aluminum. Jom-J Min Met Mat S 48(5):23–27

    Article  Google Scholar 

  10. Allaire C, Desclaux P (1991) Effect of alkalis and of a reducing atmosphere on the corrosion of refractories by molten aluminum. J Am Ceram Soc 74(11):2781–2785. doi:10.1111/j.1151-2916.1991.tb06843.x

    Article  Google Scholar 

  11. Lee WE, Moore RE (1998) Evolution of in situ refractories in the 20th century. J Am Ceram Soc 81(6):1385–1410

    Article  Google Scholar 

  12. Afshar S, Allaire C (2000) The corrosion of refractory aggregates by molten Aluminum. Jom-J Min Met Mat S 52(5):43–46. doi:10.1007/s11837-000-0034-z

    Article  Google Scholar 

  13. Allahevrdi M, Afshar S, Allaire C (1998) Additives and the corrosion resistance of aluminosilicate refractories in molten Al-5Mg. Jom-J Min Met Mat S 50(2):30–34. doi:10.1007/s11837-998-0245-2

    Article  Google Scholar 

  14. Koshy P, Gupta S, Edwards P, Sahajwalla V (2011) Effect of BaSO4 on the interfacial phenomena of high-alumina refractories with Al–Alloy. J Mater Sci 46(2):468–478. doi:10.1007/s10853-010-4931-4

    Article  Google Scholar 

  15. Ibarra MN, Almanza JM, Cortes DA, Escobedo JC, Martinez-Lopez R (2016) Chemical interaction between Ba–celsian (BaAl2Si2O8) and molten Aluminum. Ceram Int 42(2):3491–3496. doi:10.1016/j.ceramint.2015.10.152

    Article  Google Scholar 

  16. Ibarra MN, Almanza JM, Cortes DA, Escobedo JC, Pech M, Martinez R (2015) Effect of the addition of alkaline earth sulfates to mullite ceramics on the corrosion and wetting by Al–Mg alloy. J Eur Ceram Soc 35(7):2189–2194. doi:10.1016/j.jeurceramsoc.2015.01.025

    Article  Google Scholar 

  17. Adabifiroozjaei E, Koshy P, Rastkerdar E, Ma H, Sorrell C (2016) Interfacial reactions between Al7075 alloy and BaAl2Si2O8 + CaAl2Si2O8 mixture. Phil Mag. doi:10.1080/14786435.2016.1237784

    Google Scholar 

  18. Saiz E, Tomsia AP, Loehman RE, Ewsuk K (1996) Effects of composition and atmosphere on reactive metal penetration of aluminium in mullite. J Eur Ceram Soc 16(2):275–280. doi:10.1016/0955-2219(95)00156-5

    Article  Google Scholar 

  19. Fahrenholtz WG, Ewsuk KG, Loehman RE (1998) Kinetics of ceramic-metal composite formation by reactive metal penetration. J Am Ceram Soc 81(10):2533–2541

    Article  Google Scholar 

  20. Saiz E, Tomsia AP (1998) Kinetics of metal-ceramic composite formation by reactive penetration of silicates with molten aluminum. J Am Ceram Soc 81(9):2381–2393

    Article  Google Scholar 

  21. Gao Y, Jia J, Loehman RE, Ewsuk KG, Fahrenholtz WG (1996) Microstructure and composition of Al–Al2O3 composites made by reactive metal penetration. J Mater Sci 31(15):4025–4032. doi:10.1007/Bf00352664

    Article  Google Scholar 

  22. Ewsuk KG, Glass SJ, Loehman RE, Tomsia AP, Fahrenholtz WG (1996) Microstructure and properties of Al2O3–Al(Si) and Al2O3–Al(Si)–Si composites formed by in situ reaction of Al with aluminosilicate ceramics. Metall Mater Trans A 27(8):2122–2129. doi:10.1007/Bf02651867

    Article  Google Scholar 

  23. Breslin MC, Ringnalda J, Xu L, Fuller M, Seeger J, Daehn GS, Otani T, Fraser HL (1995) Processing, microstructure, and properties of co-continuous alumina–aluminum composites. Mat Sci Eng A Struct 195(1–2):113–119. doi:10.1016/0921-5093(94)06510-1

    Article  Google Scholar 

  24. Fahrenholtz WG, Ewsuk KG, Loehman RE, Tomsia AP (1995) Synthesis and processing of Al2O3/Al composites by in situ reaction of aluminum and mullite. In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics:99-109

  25. Saiz E, Foppiano S, MoberlyChan W, Tomsia AP (1999) Synthesis and processing of ceramic-metal composites by reactive metal penetration. Compos Part A Appl S 30(4):399–403. doi:10.1016/S1359-835x(98)00126-2

    Article  Google Scholar 

  26. Marasco AL, Ringnalda J, Breslin MC, Daehn GS, Fraser HL (1994) Transformation Kinetics of the Reaction between Silica Glass and Aluminum to Produce an Al2O3/Al Composite. Processing and Fabrication of Advanced Materials III: 35-46

  27. Gao Y, Jia J, Loehman RE, Ewsuk KG (1995) Transmission electron-microscopy study of Al/Al2O3 composites fabricated by reactive metal infiltration. J Mater Res 10(5):1216–1225. doi:10.1557/Jmr.1995.1216

    Article  Google Scholar 

  28. Marumo C, Pask JA (1977) Reactions and wetting behavior in aluminum-fused silica system. J Mater Sci 12(2):223–233. doi:10.1007/Bf00566262

    Article  Google Scholar 

  29. Loehman RE, Ewsuk K, Tomsia AP (1996) Synthesis of Al2O3–Al composites by reactive metal penetration. J Am Ceram Soc 79(1):27–32. doi:10.1111/j.1151-2916.1996.tb07876.x

    Article  Google Scholar 

  30. Yoshikawa N, Hattori A, Taniguchi S (2005) Growth rate of reaction layer between SiO2 and molten Al above 1473 K. Mater Trans 46(4):842–845. doi:10.2320/matertrans.46.842

    Article  Google Scholar 

  31. Prabripu K, Prabripu K, Piggott MR (1974) Reaction between silica and aluminum. J Electrochem Soc 121(3):430–434. doi:10.1149/1.2401831

    Article  Google Scholar 

  32. Standage AE, Gani MS (1967) Reaction between vitreous silica and molten aluminum. J Am Ceram Soc. doi:10.1111/j.1151-2916.1967.tb15049.x

    Google Scholar 

  33. Kirkaldy JS, Young DJ (1987) Diffusion in the condensed state. Institute of Metals, London

    Google Scholar 

  34. Jerebtsov DA, Mikhailov GG (2001) Phase diagram of CaO–Al2O3 system. Ceram Int 27(1):25–28. doi:10.1016/S0272-8842(00)00037-7

    Article  Google Scholar 

  35. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(Sep1):751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  36. Al-Ca-Si (Aluminium - Calcium - Silicon) (2004). In: Effenberg G, Ilyenko S (eds) Light Metal Systems. Part 1: Selected systems from Ag-Al-Cu to Al-Cu-Er. Springer, Berlin, 10.1007/10915943_16

  37. Wriedt HA (1985) The Al–O (aluminum–oxygen) system. Bull Alloy Ph Diagr 6(6):548–553. doi:10.1007/bf02887157

    Article  Google Scholar 

  38. Osborn EF, Muan A (1960) Plate 1. The System CaO–Al2O3–SiO2. In: Phase equilibrium diagrams of oxide systems. American Ceramic Society with the Edward Orton Jr. Ceramic Foundation, Columbus

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Adabifiroozjaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adabifiroozjaei, E., Ma, H., Koshy, P. et al. Anorthite (CaAl2Si2O8)–aluminum interface: kinetics of high-temperature interactions. J Mater Sci 52, 6767–6777 (2017). https://doi.org/10.1007/s10853-017-0913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0913-0

Keywords

Navigation