Skip to main content
Log in

Transformation of Sc2O3-doped tetragonal zirconia polycrystals by aging under hydrothermal conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase transformation of less than 6 mol % Sc2O3-doped tetragonal zirconia polycrystals consisting of fine grains has been investigated. Dense bodies with homogeneous microstructures doped with 3.5 to 5 mol % Sc2O3 sintered at 1300°C for 1 h consisted mostly of a tetragonal phase. Within 20 h of aging under hydrothermal conditions at 180°C, the amount of monoclinic ZrO2 on the surface of the 4 to 5 mol % Sc2O3-doped specimens sintered at 1400°C was saturated and reached a constant value, and the increase in the amount of monoclinic ZrO2 showed a sigmoidal type of kinetic transformation. The apparent activation energy for the phase transformation in Sc2O3-doped zirconia was 84–91 kJ/mol. Based on the hydrothermal aging results, the possible existence of a larger two-phase (cubic+tetragonal) region is suggested, and the phase boundary between the cubic+tetragonal and cubic phase in the ZrO2-Sc2O3 system is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Spiridonov, L. N. Popova and YA. Popilskii, J. Solid State Chem. 2 (1970) 430.

    Google Scholar 

  2. R. Ruh, H. J. Garrett, R. F. Domagala and V. A. Patel, J. Amer. Ceram. Soc. 60 (1977) 399.

    Google Scholar 

  3. M. R. Thornber, D. J. M. Bevan and E. Summerville, J. Solid State Chem. 1 (1970) 545.

    Google Scholar 

  4. R. L. Magunov, G. L. Shklyar and V. F. Katridi, Inorg. Mater. 25 (1989) 1035.

    Google Scholar 

  5. T. S. Sheu, J. Xu and T.-Y. Tien, J. Amer. Ceram. Soc. 76 (1993) 2027.

    Google Scholar 

  6. M. J. Bannister and P. F. Skilton, J. Mater. Sci. Lett. 2 (1983) 561.

    Google Scholar 

  7. T. S. Sheu, T. Y. Tien and I. W. Chen, J. Amer. Ceram. Soc. 75 (1992) 1108.

    Google Scholar 

  8. J. Lefevre, Ann. Chim. 8 (1963) 117.

    Google Scholar 

  9. P. Aldebert and J.-P. Traverse, J. Amer. Ceram. Soc. 68 (1985) 34.

    Google Scholar 

  10. M. Yashima, N. Ishizawa, H. Fujimori, M. Kakihana and M. Yoshimura, Eur. J. Solid State and Inorg. Chem. 32 (1995) 761.

    Google Scholar 

  11. M. Yashima, M. Kakihana and M. Yoshimura, Solid State Ionics 86-88 (1996) 1131.

    Google Scholar 

  12. D. W. Stricker and W. G. Carlson, J. Amer. Ceram. Soc. 48 (1965) 286.

    Google Scholar 

  13. O. Yamamoto, T. Kawahara, Y. Takeda, N. Imanishi and Y. Sakaki, "Science and Technology of Zirconia V" (Technomic, USA, 1993) p. 733.

    Google Scholar 

  14. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai and Y. Nakamura, Solid State Ionics 79 (1995) 137.

    Google Scholar 

  15. T. Ishii, T. Iwata and Y. Tajima, ibid. 57 (1992) 153.

    Google Scholar 

  16. F. K. Moghadam, T. Yamashita, R. Sinclair and D. A. Stevenson, J. Amer. Ceram. Soc. 66 (1983) 213.

    Google Scholar 

  17. S. P. S. Badwal and J. Drennan, Solid State Ionics 53–56 (1992) 769.

    Google Scholar 

  18. F. Tietx, W. Fischer, TH. Hauber and G. Mariotto, ibid. 100 (1997) 289.

    Google Scholar 

  19. Y. Mizutani, M. Tamura, M. Kawai and O. Yamamoto, ibid. 72 (1994) 271.

    Google Scholar 

  20. M. Hirano and E. Kato, J. Ceram. Soc. Japan 105 (1997) 37.

    Google Scholar 

  21. M. Hirano, S. Watanabe, E. Kato, Y. Mizutani, M. Kawai and Y. Nakamura, Solid State Ionics 111 (1998) 161.

    Google Scholar 

  22. T. K. Gupta, J. H. Bechtold, R. C. Kuznickl, L. H. Cadoff and B. R. Rossing, J. Mater. Sci. 12 (1977) 2421.

    Google Scholar 

  23. F. F. Lange, ibid. 17 (1982) 240.

    Google Scholar 

  24. T. K. Gupta, F. F. Lange and J. H. Bechtold, ibid. 13 (1978) 1464.

    Google Scholar 

  25. I. Nettleship and R. Stevens, Int. J. High Technol. Ceram. 3 (1987) 1.

    Google Scholar 

  26. K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics 3/4 (1981) 489.

    Google Scholar 

  27. T. Sato and M. Shimada, J. Amer. Ceram. Soc. 67 (1984) c-212.

    Google Scholar 

  28. Idem., ibid. 68 (1985) 356.

  29. F. F. Lange, G. L. Dunlop and B. I. Davis, ibid. 69 (1986) 237.

    Google Scholar 

  30. M. Hirano, Brit. Ceram. Trans. J. 91 (1992) 139.

    Google Scholar 

  31. E. Lilley, in "Ceramic Transactions," Vol. 10, edited by R. E. Tressler and M. McNallen (The American Ceramic Society, Westervill, OH, 1990) p. 387.

    Google Scholar 

  32. T. T. Lepisto and T. A. Mantyla, in "Corrosion of Grass, Ceramics and Cermic Superconductors; Principles, Testing, Characterization and Applications, " edited by D. E. Clark and B. K. Zoitos (Noyes, Park Ridge, NJ, 1992) p. 492.

    Google Scholar 

  33. M. Matsui, T. Soma and I. Oda, "Advances in Ceramics, " Vol.12 (The American Ceramic Society, Westervill, OH, 1984) p. 371.

    Google Scholar 

  34. H.-Y. Lu and S.-Y. Chen, J. Amer. Ceram. Soc. 70 (1987) 537.

    Google Scholar 

  35. M. Kagawa, M. Omori, Y. Syono, Y. Imamura and S. Usui, ibid. 70 (1987) c-212.

    Google Scholar 

  36. N. Narita, S. Leng, T. Inada and K. Higashida, in "Sintering 87, Proceedings of the International Institute for the Science of Sintering Symposium, Tokyo, Japan, 1987, " edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier Applied Science, London, NY, Tokyo, 1988) p.1130.

  37. S. Iio, M. Watanabe, K. Kuroda, H. Saka and T. Imura, "Advances in Ceramics, " Vol. 24 (The American Ceramic Society, Westervill, OH, 1989) p. 49.

    Google Scholar 

  38. N. Nakanishi and T. Shigematsu, Mater. Trans. JIM. 32 (1991) 778.

    Google Scholar 

  39. H. Tsubakino, R. Nozato and M. Hamamoto, J. Amer. Ceram. Soc. 74 (1991) 440.

    Google Scholar 

  40. W. Z. Zhu, T. C. Lei and Y. Zhou, J. Mater. Sci. 28 (1993) 6479.

    Google Scholar 

  41. C. B. Azzoni, A. Paleari, F. Scardina, A. Krajewski, A. Ravaglioli and F. Meschke, ibid. 28 (1993) 3951.

    Google Scholar 

  42. G. Behrens, G. W. Dransmann and A. H. Heuer J. Amer. Ceram. Soc. 76 (1993) 1025.

    Google Scholar 

  43. Y. Sakka, J. Mater. Sci. Lett. 11 (1992) 18.

    Google Scholar 

  44. A. E. Hughes, F. T. Ciacchi and S. P. S. Badwal, in "Science and Technology of Zirconia V, " edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, PA, 1993) p. 152.

    Google Scholar 

  45. O. Kruse, H. D. Carstanjen, P. W. Kountouros, H. Schubert and G. Petzow, in "Science and Technology of Zirconia V, " edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, PA, 1993) p. 163.

    Google Scholar 

  46. J.-K. Lee and H. Kim, J. Mater. Sci. 29 (1994) 136.

    Google Scholar 

  47. M. V. Inozemtsev, M. V. Perfilev and V. P. Gorelov, Sov. Electrochem. 12 (1976) 1128.

    Google Scholar 

  48. F. K. Moghadam, PhD thesis, Stanford University, 1981.

  49. O. Yamamoto, Y. Arachi, K. Nomura, Y. Mizutani, M. Kawai and Y. Nakamura, Extended Abstract Electrochem. Soc., Fall Meeting, San Antonio, Vol. 96–2, 1996, p. 763.

    Google Scholar 

  50. M. Yashima, T. Nagatome, T. Noma, N. Ishizawa, Y. Suzuki and M. Yoshimura, J. Amer. Ceram. Soc. 78 (1995) 2229.

    Google Scholar 

  51. Y. Murase, E. Kato and M. Hirano, Yogyo Kyokaishi (J. Ceram. Soc. Japan) 92 (1984) 64.

    Google Scholar 

  52. T. Masaki, Int. J. High. Technol. Ceram. 2 (1986) 85.

    Google Scholar 

  53. F. F. Lange, J. Amer. Ceram. Soc. 69 (1986) 240.

    Google Scholar 

  54. K. Nakajima, K. Kobayashi and Y. Murata, in "Advances in Ceramics, " Vol. 12, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 399.

    Google Scholar 

  55. H. G. Scott, J. Mater. Sci. 10 (1975) 1527.

    Google Scholar 

  56. R. Ruh, K. S. Mazdiyasni, P. G. Valentine and H. O. Bielstein, J. Amer. Ceram. Soc. 67 (1984) C190.

    Google Scholar 

  57. M. Yoshimura, Amer. Ceram. Soc. Bull. 67 (1988) 1950.

    Google Scholar 

  58. T. Sato and M. Shimada, abid. 64 (1985) 1382.

    Google Scholar 

  59. M. Yoshimura, T. Noma, K. Kawabata and S. Somiya, J. Mater. Sci. Lett. 6 (1987) 465.

    Google Scholar 

  60. J. J. Swab, J. Mater. Sci. 26 (1991) 6706.

    Google Scholar 

  61. A. J. A. Winnubst and A. J. Burggraaf, in "Advances in Ceramics, " Vol. 24, edited by S. Somiya, N. Yamamoto and H. Yanagida (American Ceramic Society, Westerville, OH, 1988) p. 39.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, M., Kato, E. Transformation of Sc2O3-doped tetragonal zirconia polycrystals by aging under hydrothermal conditions. Journal of Materials Science 34, 1399–1405 (1999). https://doi.org/10.1023/A:1004583023044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004583023044

Keywords

Navigation