Skip to main content
Log in

Regulation of the hydrogenase system in Rhizobium leguminosarum

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Some rhizobial strains induce in the legume nodule a hydrogenase capable of reducing the hydrogen generated as an obligate by-product of the nitrogenase reaction. This hydrogen recycling system has a potential to improve the energy efficiency of the rhizobium-legume symbiosis. The Hup (Hydrogen uptake) system from Rhizobium leguminosarumbv. viciae UPM791 is only expressed in the legume nodule. Its genetic determinants have been isolated and characterized, and the regulation of their expression studied at the molecular level. Hydrogenase structural genes and most of the accessory genes (hup genes) are only expressed in the legume nodule under the control of NifA, the main activator of nitrogen-fixation genes. The remaining hydrogenase accessory genes (hyp genes) are expressed in microoxic vegetative cells under the control of FnrN, an Fnr-like transcriptional activator also necessary for induction of the bacteroid specific terminal oxidase. This regulatory pattern, unique to R. leguminosarum, appears to result from an adaptive evolution towards co-regulation of the hydrogenase and nitrogenase systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M W W, Mortenson L E and Chen J-S 1981 Hydrogenases. Biochim. Biophys. Acta 594: 105–176.

    Google Scholar 

  • Arp D J 1992 Hydrogen cycling in symbiotic bacteria. In Biological Nitrogen Fixation. Ed. G Stacey, R H Burris and H J Evans. pp 432–460. Chapman and Hall, New York.

    Google Scholar 

  • Black L K, Fu C and Maier J R 1994 Sequence and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J. Bacteriol. 176: 7102–7106.

    Google Scholar 

  • Brewin N J, DeJong T M, Phillips D A and Johnston A W R 1980 Cotransfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288: 77–79.

    Google Scholar 

  • Brito B, Martínez M, Fernández D, Rey L, Cabrera E, Palacios J M, Imperial J and Ruiz-Argüeso T 1997 Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein NifA. Proc. Natl. Acad. Sci. U.S.A. 94: 6019–6024.

    Google Scholar 

  • Brito B, Palacios J-M, Hidalgo E, Imperial J and Ruiz-Argüeso T 1994 Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J. Bacteriol. 176: 5297–5303.

    Google Scholar 

  • Brito B, Palacios J, Imperial J, Ruiz-Argüeso T, Yang W, Bisseling T, Schmitt H, Kerl V, Bauer T, Kokotek W and Lotz W 1995 Temporal and spatial co-expression of hydrogenase and nitrogenase genes from Rhizobium leguminosarum bv viciae in pea (Pisum sativum L.) root nodules. Mol. Plant Microbe Interact. 8: 235–240.

    Google Scholar 

  • Brito B, Palacios J-M, Ruiz-Argüeso T and Imperial J 1996 Identification of a gene for a chemoreceptor of the methyl-accepting type in the symbiotic plasmid of Rhizobium leguminosarum bv. viciae UPM791. Biochim. Biophys. Acta 1308: 7–11.

    Google Scholar 

  • Cammack R, Fernández V M and Schneider K 1988 Nickel in hydrogenases from sulfate-reducing, photosynthetic and hydrogen oxidizing bacteria. In The Bioinorganic Chemistry of Nickel. Ed. J R Lancaster. pp 167–190. VCH Publishers, New York.

    Google Scholar 

  • Cantrell M A, Hickok R E and Evans H J 1982 Identification and characterization of plasmids in hydrogen uptake positive and hydrogen uptake negative strains of Rhizobium japonicum. Arch. Microbiol. 131: 102–106.

    Google Scholar 

  • Dixon R O D 1972 Hydrogenase in legume root nodule bacteroids: ocurrence and properties. Arch. Microbiol. 85: 193–201.

    Google Scholar 

  • Dixon R O D and Wheeler C T 1986 Nitrogen fixation in plants. Blackie, Glasgow.

    Google Scholar 

  • Eberz G and Friedrich B 1991 Three trans-acting functions control hydrogenase synthesis in Alcaligenes eutrophus. J. Bacteriol. 173: 1845–1854.

    Google Scholar 

  • Elsen S, Colbeau A, Chabert J and Vignais P M 1996 The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J. Bacteriol. 178: 5174–5181.

    Google Scholar 

  • Elsen S, Richaud P, Colbeau A and Vignais P M 1993 Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J. Bacteriol. 175: 7404–7412.

    Google Scholar 

  • Evans H J, Harker A R, Papen H, Russell S A, Hanus F J and Zuber M 1987 Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobia. Annu. Rev. Microbiol. 41: 335–362.

    Google Scholar 

  • Evans H J, Russell S A, Hanus F J, Papen H, Soto L S, Zuber M and Boursier P 1988a Hydrogenase and nitrogenase relationships in Rhizobium. Some recent developments. In Nitrogen fixation: Hundred years after. Ed. H Bothe, F J de Bruijn and WE Newton. pp 577–582. VCH, New York.

    Google Scholar 

  • Evans H J, Russell S A, Hanus F J and Ruiz-Argüeso T 1988b The importance of hydrogen recycling in nitrogen fixation by legumes. In World crops: Cool season food legumes. Ed. R J Summerfield. pp 777–791. Kluwer Academic Publ., Boston.

    Google Scholar 

  • Fischer H M 1994 Genetic regulation of nitrogen fixation in Rhizobia. Microbiol. Rev. 58: 352–386.

    Google Scholar 

  • Fontecilla-Camps J C, Frey M, Garcin E, Hatchikian C, Montet Y, Piras C, Vernede X and Volbeda A 1997 Hydrogenase: A hydrogen-metabolizing enzyme. What do the crystal structures tell us about its mode of action? Biochimie 79: 661–666.

    Google Scholar 

  • Fontecilla-Camps J C, Volbeda A and Frey M 1996 Hydrogen biocatalysis: A tale of two metals. Trends Biotechnol. 14: 417–420.

    Google Scholar 

  • Friedrich B and Schwartz E 1993 Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu. Rev. Microbiol. 47: 351–383.

    Google Scholar 

  • Gutiérrez D, Hernando Y, Palacios J M, Imperial J and Ruiz-Argüeso T 1997 FnrN controls symbiotic nitrogen fixation and hydrogenase activities in Rhizobium leguminosarum bv viciae UPM791. J. Bacteriol. 179: 5264–5270.

    Google Scholar 

  • Haugland R A, Cantrell M A, Beaty J S, Hanus F J, Russell S A and Evans H J 1984 Characterization of Rhizobium japonicum hydrogen uptake genes. J. Bacteriol. 159: 1006–1012.

    Google Scholar 

  • Hernando Y, Palacios JM, Imperial J and Ruiz-Argüeso T 1995 The hypBFCDE operon from Rhizobium leguminosarum bv viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene. J. Bacteriol. 177: 5661–5669.

    Google Scholar 

  • Hernando Y, Palacios J M, Imperial J and Ruiz-Argüeso T 1998 Rhizobium leguminosarum bv. viciae hypA is expressed in pea (Pisum sativum) bacteroids and is required for hydrogenase activity and processing. FEMS Microbiol. Lett. 169: 295–302.

    Google Scholar 

  • Hidalgo E, Leyva A and Ruiz-Argüeso T 1990 Nucleotide sequence of the hydrogenase structural genes from Rhizobium leguminosarum. Plant Mol. Biol. 15: 367–370.

    Google Scholar 

  • Hidalgo E, Palacios J M, Murillo J and Ruiz-Argüeso T 1992 Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J. Bacteriol. 174: 4130–4139.

    Google Scholar 

  • Hwang J C and Burris R H 1972 Inhibition of nitrogenase-catalyzed reactions. Biochim. Biophys. Acta 283: 339–350.

    Google Scholar 

  • Kahn D, Batut J, Daveran M-L and Fourment J 1993 Structure and regulation of the fixNOQP operon from Rhizobium meliloti. In New horizons in nitrogen fixation. Ed. R Palacios, J Mora, and W E Newton. p 474. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Keyser H H, Weber D F and Uratsu S L 1984 Rhizobium japonicum serogroup and hydrogenase phenotype distribution in 12 states. Appl. Environ. Microbiol. 47: 613–615.

    Google Scholar 

  • Kim H, Gabel C and Maier R J 1993 Expression of hydrogenase in Hupc strains of Bradyrhizobium japonicum. Arch. Microbiol. 160: 43–50.

    Google Scholar 

  • Kim H and Maier R J 1990 Transcriptional regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum. J. Biol. Chem. 265: 18729–18732.

    Google Scholar 

  • Kim H, Yu C and Maier R J 1991 Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen and hydrogen. J. Bacteriol. 173: 3993–3999.

    Google Scholar 

  • Lambert G R, Cantrell M A, Hanus F J, Russell S A, Haddad K R and Evans H J 1985 Intraspecies and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability. Proc. Natl. Acad. Sci. U.S.A. 82: 3232–3236.

    Google Scholar 

  • Lambert G R, Harker A R, Cantrell M A, Hanus F J, Russell S A, Haugland R A and Evans H J 1987 Symbiotic expression of cosmid-borne Bradyrhizobium japonicum hydrogenase genes. Appl. Environ. Microbiol. 53: 422–428.

    Google Scholar 

  • Lentzsch P and Miksch G 1988 Detection of uptake hydrogenase in Rhizobium leguminosarum and Rhizobium meliloti. Zentralbl. Mikrobiol. 143: 269–274.

    Google Scholar 

  • Lenz O and Friedrich B 1998 A novel multicomponent system mediates H2 sensing in Alcaligenes eutrophus. Proc. Natl. Acad. Sci. U.S.A. 95: 12474–12479.

    Google Scholar 

  • Leyva A, Palacios JM, Mozo T and Ruiz-Argüeso T 1987a Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. J. Bacteriol. 169: 4929–4934.

    Google Scholar 

  • Leyva A, Palacios J M and Ruiz-Argüeso T 1987b Conserved plasmid hydrogen-uptake (hup)-specific sequences within Hup+-positive Rhizobium-leguminosarum strains. Appl. Environ. Microbiol. 53: 2539–2543.

    Google Scholar 

  • Leyva A, Palacios J M, Murillo J and Ruiz-Argüeso T 1990 Genetic organization of the hydrogen uptake (hup) cluster from Rhizobium leguminosarum. J. Bacteriol. 172: 1647–1655.

    Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G and Böck A 1991 Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol. Microbiol. 5: 123–135.

    Google Scholar 

  • Maier R J and Triplett E W 1996 Toward more productive, efficient and competitive nitrogen-fixing symbiotic bacteria. Crit. Rev. Plant Sci. 15: 191–234.

    Google Scholar 

  • Mandon K, Kaminski P A and Elmerich C 1993 Functional analysis of the fixNOQP region of Azorhizobium caulinodans. J. Bacteriol. 176: 2560–2568.

    Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian E C, Field M J, Frey M and Fontecilla-Camps J C 1997 Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Structural Biology 4: 523–526.

    Google Scholar 

  • O'Brian M R and Maier R J 1988 Hydrogen metabolism in Rhizobium: Energetics, regulation, enzymology and genetics. Adv. Microbial Physiol. 29: 1–52.

    Google Scholar 

  • Palacios J M, Murillo J, Leyva A and Ruiz-Argüeso T 1990 Differential expression of hydrogen uptake (hup) genes in vegetative and symbiotic cells of Rhizobium leguminosarum. Mol. Gen. Genet. 221: 363–370.

    Google Scholar 

  • Patschowsky T, Schlüter A and Priefer U B 1996 Rhizobium leguminosarum bv viciae contains a second fnr-fixK-like gene and an unusual fixL homologue. Mol. Microbiol. 21: 267–280.

    Google Scholar 

  • Preisig O, Anthamatten D and Hennecke H 1993 Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 90: 3309–3313.

    Google Scholar 

  • Rey L, Fernández D, Brito B, Hernando Y, Palacios J M, Imperial J and Ruiz-Argüeso T 1996 The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. Mol. Gen. Genet. 252: 237–248.

    Google Scholar 

  • Rey L, Hidalgo E, Palacios J and Ruiz-Argüeso T 1992 Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum bv viciae containing a rubredoxinlike gene and four additional open reading frames. J. Mol. Biol. 228: 998–1002.

    Google Scholar 

  • Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J and Ruiz-Argüeso T 1993 Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum bv. viciae. Mol. Microbiol. 8: 471–481.

    Google Scholar 

  • Richaud P A, Colbeau B, Toussaint B and Vignais P M 1991 Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus. J. Bacteriol. 173: 5928–5932.

    Google Scholar 

  • Rossmann R, Sauter M, Lottspeich F and Böck A 1994 Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur. J. Biochem. 220: 377–384.

    Google Scholar 

  • Ruiz-Argüeso T, Hanus F J and Evans H J 1978 Hydrogen production and uptake by pea nodules as affected by strains of Rhizobium leguminosarum. Arch. Microbiol. 116: 113–118.

    Google Scholar 

  • Sawers G 1994 The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 66: 57–88.

    Google Scholar 

  • Sayavedra-Soto L A, Powell G K, Evans H J and Morris R O 1988 Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc. Natl. Acad. Sci. U.S.A. 85: 8395–8399.

    Google Scholar 

  • Schlegel H G and Schneider K 1978 Distribution and physiological role of hydrogenases in microorganisms. In Hydrogenases: Their catalitic activity, structure and function. Ed. H G Schlegel and K Schneider. pp 15–44. Erich Goltze, Göttingen.

    Google Scholar 

  • Schubert K R and Evans H J 1976 Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. U.S.A. 73: 1207–1211.

    Google Scholar 

  • Schwartz E, Gerischer U and Friedrich B 1998 Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J. Bacteriol. 180: 3197–3204.

    Google Scholar 

  • Simpson F B and Burris R H 1984 A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224: 1095–1097.

    Google Scholar 

  • Stam H, van Verseveld H W and Stouthamer A H 1983 Derepression of nitrogenase in chemostat cultures of the fast growing Rhizobium leguminosarum. Arch. Microbiol. 135: 199–204.

    Google Scholar 

  • Stam H, Stouthamer A H and van Verseveld H W 1987 Hydrogen metabolism and energy costs of nitrogen fixation. FEMS Microbiol. Rev. 46: 73–92.

    Google Scholar 

  • Stephenson M and Stickland L H 1931 Hydrogenase: a bacterial enzyme activating molecular hydrogen I: the properties of the enzyme. Biochemistry 25: 205–214.

    Google Scholar 

  • Thiemermann S, Dernedde J, Bernhard M, Schroeder W, Massanz C and Friedrich B 1996 Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. J. Bacteriol. 178: 2368–2374.

    Google Scholar 

  • Uratsu S L, Keyser H H, Weber D F and Lim S T 1982 Hydrogen uptake (HUP) activity of Rhizobium japonicum from major U.S. soybean areas. Crop Sci. 22: 600–602.

    Google Scholar 

  • Van Soom C, Rumjanek N, Vanderleyden J and Neves M C P 1993a Hydrogenase in Bradyrhizobium japonicum: Genetics, regulation and effect on plant growth. World J. Microbiol. Biotechnol. 9: 615–624.

    Google Scholar 

  • Van Soom C, Verreth C, Sampaio M J and Vanderleyden J 1993b Identification of a potential transcriptional regulator of hydrogenase activity in free-living Bradyrhizobium japonicum strains. Mol. Gen. Genet. 239: 235–240.

    Google Scholar 

  • Vignais P M and Toussaint B 1994 Molecular biology of membranebound H2 uptake hydrogenases. Arch. Microbiol. 161: 1–10.

    Google Scholar 

  • Volbeda A, Charon M-H, Piras C, Hatchikian E C, Frey M and Fontecilla-Camps J C 1995 Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373: 580–587. Section editor: H. Lambers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Argüeso, T., Palacios, J.M. & Imperial, J. Regulation of the hydrogenase system in Rhizobium leguminosarum. Plant and Soil 230, 49–57 (2001). https://doi.org/10.1023/A:1004578324977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004578324977

Navigation