Skip to main content
Log in

Application of instrumented falling dart impact to the mechanical characterization of thermoplastic foams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The applicability of instrumented falling weight impact techniques in characterizing mechanically thermoplastic foams at relatively high strain rates is presented in this paper. In order to try simulating impact loading of foams against sharp elements, an instrumented dart having a hemispherical headstock was employed in the tests. Failure strength and toughness values were obtained from high-energy impact experiments, and the elastic modulus could be measured from both flexed plate and indentation low-energy impact tests. The results indicate a dependence of the failure strength, toughness, and the elastic modulus on the foam density, the foaming process, and the chemical composition. This influence was found to be similar to that of pure nonfoamed materials and also to that observed from low-rate compression tests. The results also indicate that the indentation low-energy impact tests were more accurate in obtaining right values of the elastic modulus than the flexed plate low-energy impact tests usually used to characterize rigid plastics. The foam indentation observed with this test configuration contributes to obtaining erroneous values of the elastic modulus if only a simple flexural analysis of plates is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISO/DIS 6603–1, "Plastics-Determination of puncture impact behavior of rigid plastics," International organization for standarization (1997).

  2. J. G. Williams, in "Fracture Mechanics of Polymers" (Ellis Horwood Ltd., London, 1984) p. 41.

    Google Scholar 

  3. A. J. Kinloch, G. A. Kodokian and M. B. Jamarani, J. Mater. Sci. 22 (1987) 4111.

    Google Scholar 

  4. N. J. Mills and A. M. H. Hwang, Cell. Polym. 9 (1989) 259.

    Google Scholar 

  5. P. Loveridge and N. J. Mills, ibid. 12 (1992) 393.

    Google Scholar 

  6. T. Casiraghi, G. Castiglioni and T. Ronchetti, J. Mater. Sci. 23 (1988) 459.

    Google Scholar 

  7. A. B. Mart´inez, J. Arnau, O. Santana and A. Gordillo, Inf. Tec. 5 (1994) 19.

    Google Scholar 

  8. L. B. Greszcuk, in "Impact Dynamics," edited by L. B. Greszczuk, J. A. Zukas, T. Nicholas, H. F. Swift and D. R. Curran (John Wiley & Sons, New York, 1982) p. 55.

    Google Scholar 

  9. L. Rayleigh, Phil. Mag. 11 (1906) 283.

    Google Scholar 

  10. H. Hertz and J. Reine, Ang. Math. 92 (1881) 156.

    Google Scholar 

  11. S. P. Timoshenko, in "Theory of elasticity" (McGraw-Hill, New York, 1934).

    Google Scholar 

  12. M. A. Rodr´iguez-p ´erez, O. Alonso, J. Souto and J. A. De Saja, Polym. Test. 16 (1997) 287.

    Google Scholar 

  13. S. P. Timoshenko and S. Woinowsky-krieger, in "Theory of plates and shells" (McGraw-Hill, NewYork, 1984) p. 71.

    Google Scholar 

  14. L. J. Gibson and M. F. Ashby, in "Cellular Solids: Structure and Properties" (Pergamon Press, Oxford, 1988) p. 43.

    Google Scholar 

  15. P. R. Hornsby, in "Two-Phase Polymer Systems," edited by L. A. Utracki (Carl Hanser Verlag, Munich, 1991) p. 93.

    Google Scholar 

  16. M. A. Rodr´iguez-p´erez, J. I. Velasco, D. Arenc ´on, O. Almanza and J. A. De Saja, J. Appl. Polym. Sci. (submitted, 1998).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, J.I., Martínez, A.B., Arencón, D. et al. Application of instrumented falling dart impact to the mechanical characterization of thermoplastic foams. Journal of Materials Science 34, 431–438 (1999). https://doi.org/10.1023/A:1004565822502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004565822502

Keywords

Navigation