Skip to main content
Log in

Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes Under Drop-Weight Impact Testing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article investigates the low-velocity impact behavior and crashworthiness of metallic foams and functionally graded foam-filled tubes (FGFTs). Closed cell Zn, Al, and A356 alloy foams fabricated by the direct foaming method are used as axial grading fillers for the manufacture of single-, double-, triple-, and quad-layer structures. The microstructural examinations are implemented by an optical microscope and a field emission scanning electron microscope. The drop-weight impact testing is performed on the metallic foams and FGFTs with a free fall velocity of 5.42 m/s and energy of 294.3 J. The influence of material, density, number, and arrangement of foam layers on the deformation behavior and specific energy absorption (SEA) is studied. The results indicate the multiple crushing response and stepwise increment of stress through distinct plateau regions in the FGFTs. The A356 foam with low density and great inherent strength provides the highest SEA, whereas high density and brittle matrix of the Zn foam deteriorate the SEA of FGFTs. The maximum SEA of 261 J/(g cm−3) is achieved in the double-layer A356-Al foam-filled tube. The best crashworthiness is fulfilled in multilayer A356-Al structures owing to a combination of high SEA and low peak crushing strength (σpeak).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. 1.Z. Li, R. Chen, and F. Lu: Thin Walled Struct., 2018, vol. 124, pp. 343-49.

    Google Scholar 

  2. 2.I. Duarte, L.K. Opara, and M. Vesenjak: Compos. Struct., 2018, vol. 192, pp. 184-92.

    Google Scholar 

  3. Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya. O. Kuwazuru, and N. Yoshikawa (2013) Metall. Mater. Trans. A, vol. 44A, pp. 1880-86.

    Google Scholar 

  4. 4.W. Zhao, S.Y. He, Y. Zhang, C. Zhang, G.Y. Tang, and G. Dai: Mater. Lett., 2020, vol. 266, pp. 1-4.

    Google Scholar 

  5. 5.M.A. Islam, M.A. Kader, O.J. Hazell, J.P. Escobedo, A.D. Brown, and M. Saadatfar: Mater. Des., 2020, vol. 191, pp. 1-8.

    Google Scholar 

  6. 6.B.H.G. Jigh, H.H. Toudeshky, and M.A. Farsi: J. Alloys Compd., 2017, vol. 695, pp. 133-41.

    Google Scholar 

  7. 7.M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner: Int. J. Impact Eng., 2018, vol. 114, pp. 111-22.

    Google Scholar 

  8. 8.M. Vesenjak, M.A. Sulong, L.K. Opara, M. Borovinsek, V. Mathier, and T. Fiedler: Mech. Mater., 2016, vol. 93, pp. 96-108.

    Google Scholar 

  9. 9.B.Y. Su, C.M. Huang, H. Sheng, and W.Y. Jang: Mater. Charact., 2018, 135, pp. 203-13.

    CAS  Google Scholar 

  10. 10.X. Lijun, and S. Weidong: Int. J. Impact Eng., 2018, vol. 111, pp. 255-72.

    Google Scholar 

  11. 11.S. Sahu, D.P. Mondal, J.U. Cho, M.D. Goel, and M.Z. Ansari: Composites Part B, 2019, vol. 160, pp. 394-401.

    CAS  Google Scholar 

  12. 12.Y. Sun, and Q.M. Li: Int. J. Impact Eng., 2018, vol. 112, pp. 74-115.

    Google Scholar 

  13. 13.M.A. Kader, A.D. Brown, P.J. Hazell, V. Robins, J.P. Escobedo, and M. Saadatfar: Int. J. Impact Eng., 2020, vol. 139, pp. 1-17.

    Google Scholar 

  14. 14.J. Fang, Y. Gao, X. An, G. Sun, J. Chena, and Q. Li: Composites Part B, 2016, vol. 92, pp. 338-49.

    Google Scholar 

  15. 15.F. Xiong, D. Wang, and S. Yin: Mater. Des., 2018, vol. 156, pp. 198-214.

    Google Scholar 

  16. 16.D.K. Rajak, N.N. Mahajan, E. Linul: J. Alloys Compd., 2019, vol. 775, pp. 675-89.

    CAS  Google Scholar 

  17. 17.X. Yang, T, An, Z. Wu, T. Zou, H. Song, J. Sha, C. He, and N. Zhao: Compos. Struct., 2020, vol. 245, 112357.

    Google Scholar 

  18. Y. Zhang, X.Y. Zang, K. Wang, S.Y He, J.G Liu, W. Zhao, X.L. Gong, and J. Yu (2020) Mater. Lett. vol. 264, 127292.

    Google Scholar 

  19. S.Y. He, Y.N. Lv, S.T. Chen, G. Dai, J.G. Liu, and M.K. Huo (2020) Mater. Sci. Eng. A, vol. 772, pp. 1-12.

    Google Scholar 

  20. 20.Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou, and Y. Li: Composites Part B, 2020, vol. 183, 107630.

    CAS  Google Scholar 

  21. 21.Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou, and Y. Li: Int. J. Mech. Sci., 2020, vol. 177, pp. 1-14.

    Google Scholar 

  22. Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru, and N. Yoshikawa: Mater. Sci. Eng. A, 2015, vol. 639, pp. 597-603.

    CAS  Google Scholar 

  23. J. Zhang, L. Chen, H. Wu, Q. Fang, and Y. Zhang (2020) Compos. Struct., vol. 241, pp. 1-12.

    Google Scholar 

  24. 24.M.S. Attia, S.A. Meguid, and H. Nouraei: Finite Elem. Anal. Des., 2012, vol. 61, pp. 50-59.

    Google Scholar 

  25. 25.H. Yin, G. Wen, S. Hou, and Q. Qing: Mater. Des., 2013, vol. 44, pp. 414-28.

    Google Scholar 

  26. Y. Zhang, S.Y. He, J.G Liu, W. Zhao, X.L Gong, and J. Yu (2019) Compos. Struct. vol. 220, pp. 451-59.

    Google Scholar 

  27. 27.X. Yu, Q. Qin, J. Zhang, S. He, C. Xiang, M. Wang, and T.J. Wang: Compos. Struct., 2018, vol. 201, pp. 423-33.

    Google Scholar 

  28. 28.G. Li, Z. Zhang, G. Sun, F. Xu, and X. Huang: Int. J. Mech. Sci., 2014, 89, pp. 439-52.

    Google Scholar 

  29. 29.O. Mohammadiha, and H. Ghariblu: Thin Walled Struct., 2016, vol. 98, pp. 627-39.

    Google Scholar 

  30. 30.M. Salehi, S.M.H. Mirbagheri, and M. Arabkohi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5494-5509.

    Google Scholar 

  31. 31.N. Movahedi, S.M.H. Mirbagheri, and S.R. Hosseini: Met. Mater. Int., 2014, vol. 20, pp. 757-63.

    CAS  Google Scholar 

  32. 32.A. Baroutaji, M. Sajjia, and A.G. Olabi: Thin Walled Struct., 2017, vol. 118, pp. 137-63.

    Google Scholar 

  33. 33.M. Li, J. Li, S. Barbat, R. Baccouche, and W. Lu: Compos. Struct., 2018, vol. 200, pp. 120-26.

    Google Scholar 

  34. 34.M. Li, S. Barbat, R. Baccouche, J. Belwafa, W. Lu: Composites Part B, 2020. vol. 193, pp. 1-10.

    Google Scholar 

  35. 35.G. Sun, T. Liu, X. Huang, G. Zheng, and Q. Li: Eng. Struct., 2018, vol. 155, pp. 235-50.

    Google Scholar 

  36. 36.M.J. Rezvani, and H. Souzangarzadeh: J. Storage Mater., 2020, vol. 27, 101071.

    Google Scholar 

  37. 37.G. Zhu, S. Li, G. Sun, G. Li, and Q. Li: Thin Walled Struct., 2016, vol. 109, pp. 377-89.

    Google Scholar 

  38. J. Fan, J. Zhang, Z. Wang, Z. Li, and L. Zhao: Mater. Sci. Eng. A, 2013, vol. 561, pp. 352-61.

    CAS  Google Scholar 

  39. 39.L.J. Gibson, and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge Solid State Science Series, London, 1997, pp. 175-231.

    Google Scholar 

  40. 40.X. Zhou, Y. Li, and X. Chen: J. Mater. Process. Technol., 2020, vol. 283, pp. 1-11.

    Google Scholar 

  41. I. Cantat, S.C. Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F, Rouyer, and A. Saint-Jalmes (2013) Foams Structure and dynamics. 1st edn. Oxford University Press, London. pp. 17-30.

    Google Scholar 

  42. 42.M. Mukherjee, F.G. Moreno, C. Jimenez, A. Rack, and J. Banhart: Acta Mater., 2017, vol. 131, pp. 156-68.

    CAS  Google Scholar 

  43. 43.J.Y. Yuan, and Y.X. Li: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1619-25.

    CAS  Google Scholar 

  44. 44.J.W. Ming, F.Z. Tian, and L.D. Jun: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 7-13.

    Google Scholar 

  45. 45.ASM Handbook Committee: Metals Handbook, 2nd ed., vol. 3, Alloy phase diagrams, ASM International, Materials Park, Ohio, 1990.

    Google Scholar 

  46. 46.G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-hill Education, New York, 1986, pp. 81-95.

    Google Scholar 

  47. 47.U.A. Atturan, S.H. Nandam, B.S. Murty and S. Sankaran: Mater. Sci. Eng. A, 2017, vol. 684, pp. 178-85.

    CAS  Google Scholar 

  48. R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang: Mater. Sci. Eng. A, 2019, vol. 756, pp. 302-13.

    CAS  Google Scholar 

  49. D. Ruan, G. Lu. F.L. Chen, and E. Siores (2002) Compos. Struct., vol. 56, pp. 331-36.

    Google Scholar 

  50. 50.J. Shen, G. Lu, and D. Ruan: Composites Part B, 2019, vol. 41, pp. 678-85.

    Google Scholar 

  51. 51.T. Dirgantara, A. Jusuf, E.O. Kurniati, L. Gunawan, and I..S. Putra: Thin Walled Struct., 2018, vol. 129, pp. 365-80.

    Google Scholar 

  52. 52.Y. Hangai, S. Otazawa, and T. Utsunomiya: Compos. Struct., 2018, vol. 183, pp. 416-22.

    Google Scholar 

  53. 53.C. Ge, Q. Gao, L. Wang, and Z. Hong: Thin Walled Struct., 2020, vol. 149, pp. 1-10.

    Google Scholar 

  54. Y. Hangai, H. Ikeda, K. Amagai, R. Suzuki. M. Matsubara, and N. Yoshikawa (2018) Metall. Mater. Trans. A, vol. 49A, pp. 4452-55.

    Google Scholar 

  55. Y. Hangai, T. Morita, and T. Utsunomiya: Mater. Sci. Eng. A, 2017, vol. 696, pp. 544-51.

    CAS  Google Scholar 

  56. 56.Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585-89.

    Google Scholar 

  57. 57.B. Koohbor, and A. Kidane: Int. J. Mech. Sci., 2013, vol. 68, pp. 151-61.

    Google Scholar 

  58. 58.L. Maheo, and P. Viot: Int. J. Impact Eng., 2013, vol. 53, pp. 84-93.

    Google Scholar 

  59. 59.N. Gardner, E. Wang, and A. Shukla: Compos. Struct., 2012, vol. 94, pp. 1755-70.

    Google Scholar 

  60. 60.X. Zhang, and H. Zhang: Mater. Des., 2016, vol. 102, pp. 199-211.

    Google Scholar 

  61. 61.X. Liu, J. Zhang, Q. Fang, H. Wu, and Y. Zhang: Int. J. Impact Eng., 2016, vol. 110, pp. 382-94.

    Google Scholar 

  62. 62.Q. Fang, J. Zhang, Y. Zhang, J. Liu, and Z. Gong: Compos. Struct., 2015, vol. 124, pp. 409-20.

    Google Scholar 

  63. 63.M.J. Nayyeri, and S.M.H. Mirbagheri: Mater. Lett., 2016, vol. 185, pp. 89-91.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Metal Foam Group of Amirkabir University (MFGAU) through Grant No. 110-mir-13980131.The authors are grateful to Rahyaft Advanced Sciences and Technologies, a knowledge-based company, for their support in casting the metal foams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. H. Mirbagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 29, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Mirbagheri, S.M.H. & Ramiani, A.J. Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes Under Drop-Weight Impact Testing. Metall Mater Trans A 51, 5120–5138 (2020). https://doi.org/10.1007/s11661-020-05928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05928-5

Navigation