Skip to main content
Log in

Corrosion Behavior of AISI 316L Stainless Steel and ODS FeAl Aluminide in Eutectic Li2CO3–K2CO3 Molten Carbonates under Flowing CO2–O2 Gas Mixtures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A kinetics study on AISI 316L stainless steel and ODS(Oxide-Dispersion-Strenghtened) FeAl iron aluminide was conducted concerningits corrosion behavior in moltenLi2CO3-K2CO3 eutectic at 650°C in flowingCO2-O2 gas mixtures. The corrosion resistance of FeAl ODS wasdemonstrated to be significantly superior to that of austenitic AISI 316Lsteel under all gas conditions tested in this work. At low CO2partial pressure (PCO2=0.3 atm) the corrosion rate of bothalloys decreased with time due to the formation of a protective oxidelayer. In dry CO2 gas, corrosion of AISI steel proceeded at anear-linear rate, indicative of a surface-controlled reaction. FeAl corrodedinitially following parabolic behavior, but, on further reaction, exhibitedsome weight loss. A similar behavior was also observed in a67CO2-33O2 gas mixture. Corrosion of FeAl in highCO2 gas has been postulated to initiate by acidic fluxing ofyttria particles. The attack then develops as pitting and leads to furtherreaction by general corrosion as a consequence of the formation ofactive-passive electrochemical cells between the interior of pits and theexternal surface. The weight loss of AISI 316L in67CO2-33O2 gas can be ascribed to the high oxidizing power ofthe gas causing a continuous dissolution of theCr2O3 layer into a soluble chromate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. T. Vossen, L. Plomp, J. H. W. de Wit, and G. Rietveld, J. Electrochem. Soc. 142, 3327 (1995).

    Google Scholar 

  2. D. A. Shores and M. J. Pischke, in Proc. 3rd Intern. Symp. Carbonate Fuel Cells, D. Shores, H. Maru, I. Uchida, and J. R. Selman, eds. PV 93-3, (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1993), p. 214.

    Google Scholar 

  3. T. Nishina, K. Yuasa and I. Uchida, in Proc. 3rd Intern. Symp. Carbonate Fuel Cells, D. Shores, H. Maru, I. Uchida, and J. R. Selman, eds. PV 93-3 (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1993), p. 26.

    Google Scholar 

  4. M. Keijzer, K. Hemmes and G. L. Lindbergh, in Proc. 4th Intern. Symp. Carbonate Fuel Cells, J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, and T. E. Fuller, eds., PV 97-4 (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1997), p. 296.

    Google Scholar 

  5. M. S. Yazici and J. R. Selman, in Proc. 4th Interm. Symp. Carbonate Fuel Cells, J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, and T. E. Fuller, eds., PV 97-4 (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1997), p. 253.

    Google Scholar 

  6. M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci. 39, 1193 (1997).

    Google Scholar 

  7. H. Lux, Z. Elektrochem. Angew. Phys. Chem. 45, 303 (1939).

    Google Scholar 

  8. H. Flood, T. Forland and K. Motzfel, Acta Chem. Scand. 6, 257 (1952).

    Google Scholar 

  9. C. Yuh, R. Johnsen, M. Farooque, and H. Maru, J. Power Sources 56, 1 (1995).

    Google Scholar 

  10. B. W. Hatt, in Molten Salt Technology, D. G. Lovering, ed. (Plenum Press, New York, 1982).

    Google Scholar 

  11. S. Fragini, A. Di Bartolomeo, L. Giorgi, and A. Masci, Denki Kagaku 64, 508 (1996).

    Google Scholar 

  12. S. Frangini, in Proc. 4th Intern. Symp. Carbonate Fuel Cell, J. R. Selman, I. Uchida, H. Wendt, D. A. Shores and T. E. Fuller, eds., PV 97-4 (Electrochem. Soc. Proc. Ser. Pennington, NJ, 1997), p. 306.

    Google Scholar 

  13. P. Singh, in Proc. Symp. Corros. Batteries Fuel Cells Corros. Solar Energy Systems, C. J. Johnson and S. L. Pohlman, eds., PV 83-1, (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1983), p. 124.

    Google Scholar 

  14. J. R. Selman and H. C. Maru, in Advances in Molten Salt Chemistry, Vol. 4, G. Mamantov and J. Braunsteni, eds. (1981) (Plenum Press, New York), p. 159.

    Google Scholar 

  15. A. Borucka and C. M. Sugiyama, Electrochim. Acta 14, 871 (1969).

    Google Scholar 

  16. S. H. White and M. M. Bower, in Proc. 3rd Intern. Symp. Molten Salts, Vol. 81, G. Mamantov, B. Blander, and G. P. Smith, eds. (1981), PV81-9 (Electrochem. Soc. Proc. Ser., Pennington, NJ, 1981), p. 334.

    Google Scholar 

  17. M. Azzi and J. J. Rameau, Corros. Sci. 24, 935 (1984).

    Google Scholar 

  18. H. J. Grabke, in Proc. Europ. Colloq. Role Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Petten, 1988) (Elsevier Science, London).

    Google Scholar 

  19. H. S. Hsu, J. H. DeVan and M. Howell, J. Electrochem. Soc. 134, 2146 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frangini, S. Corrosion Behavior of AISI 316L Stainless Steel and ODS FeAl Aluminide in Eutectic Li2CO3–K2CO3 Molten Carbonates under Flowing CO2–O2 Gas Mixtures. Oxidation of Metals 53, 139–156 (2000). https://doi.org/10.1023/A:1004538931676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004538931676

Navigation