Skip to main content
Log in

The rate-controlling mechanism(s) during plastic deformation of polycrystalline NaCl at 0.28–0.75 TM

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The plastic deformation kinetics of polycrystalline 99.9% NaCl were determined in compression at 23–532°C (0.28–0.75TM) and a strain rate ε = 8.3 × 10−4 s−1. The rate-controlling mechanism at 0.28–0.65 TM (σ/μ < 3 × 10−4) was deduced to be the intersection of forest dislocations with a Helmholtz free energy Δ F* = 113 kJ/mol (0.16 μ b3). The forest dislocation obstacles become ineffective at ∼0.65TM. The kinetics at 0.75TM (σ/μ > 3 × 10−4) were in accord with the Weertman-Dorn creep equation. At T > 0.5 TM the decrease in strain hardening with strain and temperature was attributed to cross slip, leading to a brittle-to-ductile transition at 0.5 TM. Dislocation climb was deduced to become more important at higher temperatures. The stress-strain curves were described reasonably well by the Bergström-Roberts dislocation multiplication model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Haasen, "Dislocations and Properties of Real Materials" (The Institute of Metals, London, 1985) p. 312.

  2. A. Argon and G. Padawer, Phil. Mag. 25 (1972) 1073.

    Google Scholar 

  3. A. Apel, Phys. Stat. Sol. (a) 25 (1974) 607; 31 (1975) 617.

    Google Scholar 

  4. R. J. Stokes, Proc. Br. Ceram. Soc. 6 (1966) 189.

    Google Scholar 

  5. H. C. Heard, "Flowand Fracture of Rocks," Geophysical Monograph 16 (American Geophysical Union,Washington, DC, 1972) p.191.

  6. N. Stoloff, D. Lezius and T. L. Johnston, J. Appl.Phys. 34 (1963) 3315.

    Google Scholar 

  7. W. Skrotski and P. Haasen, in "Deformation Ceramic Materials," edited by R. Tessler and R. Bradt (Plenum Press, New York, 1984) p. 429.

    Google Scholar 

  8. R. W. Davidge and P. L. Pratt, Phys. Stat. Sol. 6 (1964) 759.

    Google Scholar 

  9. A. G. Evans and P. L. Pratt, Phil. Mag. 21 (1970) 951.

    Google Scholar 

  10. S. Kommik, V. Bengus and E. D. Lyak, Phys. Stat. Sol. 19 (1967) 5334.

    Google Scholar 

  11. L. B. Zuev, V. Gormov, A. Narozhnyi and O. Tarsev, Sov. Phys. Solid State 16 (1974) 302.

    Google Scholar 

  12. T. Suzuki and H. Kim, J. Phys. Soc. Japan 10 (1976) 1703.

    Google Scholar 

  13. O. K. Tarsev, A. N. Narozhnyi, L. B. Zuev and S. A. Datsuk, Problemy Prochnosti, 1 (1977) p. 111.

    Google Scholar 

  14. N. L. Carter and H. C. Heard, Amer. J. Sci. 269 (1970) 193.

    Google Scholar 

  15. S. V. Raj and G. M. Pharr, Mater. Sci. Eng. A122 (1989) 233.

    Google Scholar 

  16. M. C. Tsenn and N. L. Carter, Scripta Met. Mater. 23 (1990) 1115.

    Google Scholar 

  17. H. J. Frost and M. F. Ashby, "Deformation Mechanism Maps" (Pergamon Press, New York, 1982) pp. 75–78.

    Google Scholar 

  18. U. F. Kocks, A. S. Argon and M. F. Ashby, Prog. Mater. Sci. 19 (1975) 1.

    Google Scholar 

  19. _ H. Conrad, B. de Meester, C. Yin and M. Doner, in "Rate Processes in Plastic Deformation of Materials," edited by J. C. M. Li and A. K. Mukherjee (ASM, Metals Park, OH, 1975) 175.

  20. A. Seeger, "Handbook of Physics," (Springer-Verlag VII 12 114 (1958).

    Google Scholar 

  21. H. Strunk, Mater. Sci. Eng. 27 (1977) 225.

    Google Scholar 

  22. L. Kemter and H. Strunk, Phys. Stat. Sol. (a) 40 (1977) 385.

    Google Scholar 

  23. W. Skrotzki, "The Mechanical Behavior of Salt" (Trans. Tech. Publications, Claus-Zellerfeld, Germany, 1984) p. 381.

  24. D. E. Munson and P. R. Dawson, ibid., p. 717.

  25. U. Hunsche, ibid., p. 159.

  26. B. Ilschner and B. Reppich, Phys. Stat. Sol. 3 (1963) 2093.

    Google Scholar 

  27. F. Schuh, W. Blum and B. Ilschner, Proc. Brit. Ceram. Soc. 15 (1970) 143.

    Google Scholar 

  28. 28._ Y. Berstrom, Mater. Sci. Eng. 5 (1969/70) 193.

    Google Scholar 

  29. W. Roberts and Y. Berstrom, Acta Metall. 21 (1973) 457.

    Google Scholar 

  30. Y. Berstrom and S. Olund, Mater. Sci. Eng. 56 (1982) 47.

    Google Scholar 

  31. A. Zayed, Y. Shin and H. Conrad, in "Aluminum Alloys Their Physical and Mechanical Properties, Vol. III," edited by E. A. Starke and T. H. Sanders (EMAS, Warley, UK, 1986) p. 1691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H., Yang, D. The rate-controlling mechanism(s) during plastic deformation of polycrystalline NaCl at 0.28–0.75 TM. Journal of Materials Science 34, 821–826 (1999). https://doi.org/10.1023/A:1004537300154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004537300154

Keywords

Navigation