Skip to main content
Log in

Use of zirconium diboride-copper as an electrode in plasma applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Frequent replacement of electrodes, due to their high wear rate, is an undesired feature of most thermal plasma processes. Hence, the discovery of a high spark-resistive tool, ZrB2-Cu, is of interest. Performance evaluation of this metal matrix ceramic (MMC) employed electrical discharge machining (EDM), where steel is used as the cathode workpiece and the MMC is used as the anode tool. Compared with the performance of copper and graphite tools, ZrB2-Cu yields the highest workpiece removal rate,; and the lowest tool wear rate at high plasma heat flux conditions, resulting in an extremely low wear ratio. Energy dispersive spectroscopy shows deposition of workpiece materials (Fe, Cr, Ni and S) on the ZrB2-Cu surface after EDM. This is due to the difference between the surface temperature of the tool and the workpiece. Scanning electron microscopy and elemental mapping analysis reveal that the composite electrode erodes by a combination of dominant evaporation and melting of the metal phase, negligible melting and thermal spalling in the ceramic phase, quick refreezing of the metal phase back to the surface, and deposition of the workpiece (steel) on the tool surface. Most of the heat is conducted through the Cu phase, reducing thermal stress in the ceramic phase. This causes lower surface temperatures for the molten ZrB2 matrix; hence, the Cu tends to refreeze quickly near the surrounding ceramic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Boulos, P. Fauchais and E. Pfender, in "Thermal Plasma Fundamentals and Applications" (Plenum Press, New York, 1994) 33–48.

    Google Scholar 

  2. J. E. Harry, J. Appl. Phys. 40 (1969) 265.

    Google Scholar 

  3. A. Marotta, J. Phys. D, Appl. Phys. 27 (1994) 49.

    Google Scholar 

  4. J. R. Fenter, Sampe Quarterly 2 (1971) 1.

    Google Scholar 

  5. B. Ise, S. Meguro, T. Tamura and O. Takagi, TohoKu Kogya Daigaku Koyo 1 (1988) 25.

    Google Scholar 

  6. Y. M. Cheng, P. T. Eubank and A. M. Gadalla, Mater. Manufac. Processes II (1996) 565.

    Google Scholar 

  7. Y. M. Cheng and A. M. Gadalla, ibid. II (1996) 575.

    Google Scholar 

  8. A. M. Gadalla, B. Bozkurt and N. M. Faulk, J. Amer. Ceram. Soc. 74 (1991) 801.

    Google Scholar 

  9. P. C. Pandey and H. S. Shan, in "Modern Machining Processes" (McGraw-Hill, New York, 1981) p. 85.

    Google Scholar 

  10. T. O. Hockenberry and E. M. Williams, IEEE Trans.Ind. Gen. Appl. IGA-3 (1967) 302.

    Google Scholar 

  11. C. V. Osenbruggen, Phillips Tech. Rev. 30 (1969) 195.

    Google Scholar 

  12. M. R. Patel, M. A. Barrufet and P. T. Eubank, J. Appl. Phys. 66 (1989) 4104.

    Google Scholar 

  13. D. D. Dibintoto, P. T. Eubank and M. A. Barrufet, ibid. 66 (1989) 4095.

    Google Scholar 

  14. J. W. Robinson, ibid. 38 (1967) 210.

    Google Scholar 

  15. J. W. Robinson, M. Ham and A. N. Balaster, ibid. 44 (1973) 72.

    Google Scholar 

  16. J. W. Robinson, ibid. 44 (1976) 210.

    Google Scholar 

  17. P. T. Eubank, M. R. Patel, M. A. Barrufet and B. Bozkurt, ibid. 73 (1993) 7900.

    Google Scholar 

  18. Federal Products Corporation, in "Surfanalyzer System 5000/400 User's Manual" (August 1991).

  19. K. L. Williams, in "An Introduction to X-Ray Spectrometry" (Allen & Unwin, Winchester, MA, 1987) p. 129.

    Google Scholar 

  20. E. P. Bertin, in "Introduction to X-Ray Spectrometric Analysis" (Plenum Press, New York, 1978) pp. 439–44.

    Google Scholar 

  21. J. S. Milton and J. C. Arnold, in "Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences," 3rd Edn, (McGraw-Hill, New York, 1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norasetthekul, S., Eubank, P.T., Bradley, W.L. et al. Use of zirconium diboride-copper as an electrode in plasma applications. Journal of Materials Science 34, 1261–1270 (1999). https://doi.org/10.1023/A:1004529527162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004529527162

Keywords

Navigation