Skip to main content
Log in

Influence of Atomizing Gases on the Oxide-Film Morphology and Thickness of Aluminum Powders

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fine powders of aluminum were produced in a pilot-plant, inert-gas atomizerwith a “confined-design” nozzle, which operated vertically upward. Argonand helium at 1.85 MPa and nitrogen at 1.56 MPa were used as the atomizingagent. The morphology of the powder particles was examined by SEM. Powderswere sieved dry and wet. The Sauter mean diameter of the powders varied from20.70 to 10.25 μm depending on the atomizing gas. The distribution ofsizes was bimodal. The mean thickness of oxide on the surface of the powderwas calculated from the total oxygen contents of powder samples (determinedby a Leco analyzer). In addition, ESCA measurements and BET tests werecarried out for surface-oxide thickness and area measurements,respectively. The finest powder produced under helium incorporated thinnersurface-oxide layers than the coarser ones produced under argon andnitrogen. This was due to differences in physical properties (such asdensity, thermal conductivity) and flow properties (such as gasvelocity and relative velocity) of the atomizing gases used, i.e., helium,argon, and nitrogen. The oxide was very irregular in thickness in thecoarse-size range of the Al powders produced under argon and nitrogen. Thiswas presumably because of the high- and low-temperature oxidation ofaluminum droplets during the atomization and subsequent solidification andcooling periods leading to the rough surfaces observed with SEMinvestigation in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. M. Kim, W. M. Griffith, and F. H. Froes, in Rapidly Solidified Al Alloys, ASTM STP 890, M. E. Fine and E. A. Starke Jr., eds. (ASTM, Philadelphia, PA, 1986), pp. 283-303.

    Google Scholar 

  2. K. Wefers and G. M. Bell, Tech. Paper No. 19, Alcoa Research Labs, Alcoa Center, PA, 1972.

    Google Scholar 

  3. J. W. Bohlen, R. J. Kar, and G. R. Chanani, in Rapidly Solidified Powder Al Alloys, ASTM STP 890, M. E. Fine and E. A. Starke Jr., eds. (ASTM, Philadelphia, PA, 1986), pp. 166-185.

    Google Scholar 

  4. S. Özbilen, A. Ünal, and T. Sheppard, Int. Symp. The Physical Chemistry of Powder Metals Production and Processing (TMSySt. Mary's, Pittsburgh, PA., 1989).

    Google Scholar 

  5. A. Ünal and D. G. Robertson, Int. J. Rapid Solidification, 2, 219 (1986).

    Google Scholar 

  6. A. Ünal, Mater. Sci. Technol. 3, 1029 (1987).

    Google Scholar 

  7. S. Özbilen, A. Ünal, and T. Sheppard, Power Metall. 34, 53 (1991).

    Google Scholar 

  8. A. Ünal, Mater. Sci. Technol. 5, 1027 (1989).

    Google Scholar 

  9. A. Ünal, Int. J. Powder Metall. Tech. 26, 11 (1990).

    Google Scholar 

  10. L. Nyborg, A. Nyland, and I. Olefjord, Surface and Interface Anal. 12, 110 (1988).

    Google Scholar 

  11. A. Ünal, Metall. Trans. 20B, 61 (1989).

    Google Scholar 

  12. A. Ünal, Mater. Sci. Technol. 4, 905 (1989).

    Google Scholar 

  13. A. Ünal, Aluminum Technology 86, Conf. Proc., T. Sheppard, ed. (Institute Metals, London, 1986), pp. 673-678.

    Google Scholar 

  14. H. Lubanska, J. Metall. 22, 45 (1970).

    Google Scholar 

  15. I. Olefjord and A. Karlsson, Aluminum Technology 86, Conf. Proc., T. Sheppard, ed. (Institute of Metals, London, 1986), pp. 383-387.

    Google Scholar 

  16. I. Olefjord, H. J. Mathiea, and P. Marcus, Corros. Sci. 3, 45 (1994).

    Google Scholar 

  17. P. Kofstad, High Temperature Oxidation of Metals (Wiley, New York, 1966), pp. 22-24.

    Google Scholar 

  18. C. J. J. Booker, Corrosion (MetalyEnvironment Reactions), L. L. Shreir, ed. (Newnes-Butterworths, London, 1977), p. 1.

    Google Scholar 

  19. J. Benard, ASM Book, p. 1 (1971).

  20. H. H. Uhlig, Corros. Sci. 7, 325 (1976).

    Google Scholar 

  21. J. Benard, Acta Metall. 8, 272 (1960).

    Google Scholar 

  22. S. Özbilen, Powder Metall., 42, 70 (1999).

    Google Scholar 

  23. W. W. Harris, F. L. Ball, and A. T. Gwathmey, Acta Metall. 5, 574 (1957).

    Google Scholar 

  24. J. Benard, F. Gronlund, J. Oudar, and M. Duret, Zelektrochem. 63, 799 (1959).

    Google Scholar 

  25. J. Paidassi, Acta Metall. 6, 562 (1958).

    Google Scholar 

  26. J. Moreau and J. Benard, J. Chim. Phys. p. 787 (1956).

  27. A. F. Beck, M. A. Heine, E. J. Kaule, and M. J. Pryor, Corros. Sci. 7, (1967).

  28. M. W. Maltsev, Yu. D. Chistyakov, and M. I. Tsypin, C. R. Acad. Sci. 99, 813 (1954).

    Google Scholar 

  29. M. Chathcart, ASM Book, p. 17 (1971).

  30. N. F. Mott, Oxid. Met., p. 59 (1970).

  31. R. Hales, Corros. Sci. 12, 555 (1972).

    Google Scholar 

  32. J. E. Castle, Corrosion (MetalyEnvironment Reactions), L. L. Shreir, ed. (Newnes-Butterworth, London, 1977), p. 1.

    Google Scholar 

  33. P. J. Harrop, J. Mater. Sci. 3, 206 (1968).

    Google Scholar 

  34. B. C. Masters and J. E. Harris, Proc. Roy. Soc. 292A, 240 (1966).

    Google Scholar 

  35. W. E. Boggs, R. H. Kachik, and G. E. Pellissier, J. Electrochem. Soc., 112, 539 (1965).

    Google Scholar 

  36. M. E. Taylor, E. Holmes, and P. J. Boden: Corros. Sci. 9, 683 (1969).

    Google Scholar 

  37. A. J. Pignicco and G. E. Pellissier, J. Electrochem. Soc. 112, 1188 (1965).

    Google Scholar 

  38. E. A. Gulbransen, Ind. Eng. Chem. 41, 1385 (1949).

    Google Scholar 

  39. A. T. Gwayhmey and K. R. Lawless, in The Surface Chemistry of Metals and Semiconductors (Wiley, New York, 1960), p. 483.

    Google Scholar 

  40. J. V. Loukonis and R. V. Coleman, J. Appl. Phys. 30, 1364 (1969).

    Google Scholar 

  41. K. Thomas and M. W. Roberts, J. Appl. Phys. 32, 70 (1961).

    Google Scholar 

  42. A. Steinheil, Ann. Phys. 5, 465 (1934).

    Google Scholar 

  43. A. T. Gwathmey and K. R. Lawless, Acta Metall. 4, 153 (1965).

    Google Scholar 

  44. N. F. Mott, Oxidation of Metals and Alloys (ASM, Materials Park, OH, 1971), p. 37.

    Google Scholar 

  45. K. Thomas and M. W. Roberts, J. Appl. Phys. 32, 70 (1961).

    Google Scholar 

  46. D. W. Aylmore, S. H. Gregg, and W. P. Jepson, J. Inst. Metall. 88, 205 (1960).

    Google Scholar 

  47. M. S. Hunter and P. Powle, J. Electrochem. Soc. 1103, 482 (1956).

    Google Scholar 

  48. C. N. Cochran and W. C. Sleppy, J. Electrochem. Soc. 108, 322 (1961).

    Google Scholar 

  49. O. Kubascewski, Z. Elektrochem. 63, 823 (1959).

    Google Scholar 

  50. N. G. Schmal, H. Baumann, and H. Schneck, Arch. Eisenhuttenw, 27, 707 (1967).

    Google Scholar 

  51. O. Kubascewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd edn. (Butterworth, London, 1967).

    Google Scholar 

  52. E. A. Gulbransen and W. S. Wysong, J. Appl. Chem. 51, 108 (1947).

    Google Scholar 

  53. W. W. Smeltzer, J. Electrochem. Soc. 103, 209 (1956).

    Google Scholar 

  54. E. A. Gulbransen and W. S. Wysong, J. Phys. Colloid. Chem. 57, 1087 (1947).

    Google Scholar 

  55. T. B. Grimley, Corrosion (MetalyEnvironment Reactions), L. L. Shreir, ed. (Newnes-Butterworth, London, 1977), p. 1.

    Google Scholar 

  56. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948/49).

    Google Scholar 

  57. N. Cabrera and J. Hammon, Rep. Prog. Phys. 5, 47 (1947).

    Google Scholar 

  58. G. Hass, Z. Anong. Chem. 254, 96 (1947).

    Google Scholar 

  59. G. D. Preston and L. L. Bircumsham, Phil. Mag. 22, 654 (1936).

    Google Scholar 

  60. L. De Brouckere, J. Inst. Met. 71, 131 (1945).

    Google Scholar 

  61. F. Keller and J. D. Edwards, Int. Conf. Surface Reactions (Pittsburgh, PA, 1948), p. 202.

  62. H. C. R. Raetler, Acad. Sci. Paris, 227, 124 (1948).

    Google Scholar 

  63. H. G. F. Wildsrof, Nature 168, 600 (1951).

    Google Scholar 

  64. J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown, J. Electrochem. Soc. 112, 675 (1965).

    Google Scholar 

  65. A. Dekker and A. Middelhoek, J. Electrochem. Soc. 117, 440 (1960).

    Google Scholar 

  66. A. Guntherschulze and H. Betz, Z. Phys. 71, 106 (1932).

    Google Scholar 

  67. J. Herenguel and J. Boghen, Rev. Metall. Paris 51, 265 (1954).

    Google Scholar 

  68. G. Hass, Optik 1, 134 (1946).

    Google Scholar 

  69. M. J. Dignam, J. Electrochem. Soc. 109, 184 (1962).

    Google Scholar 

  70. M. J. Digham, J. Electrochem. Soc. 109, 192 (1962).

    Google Scholar 

  71. P. E. Doherty and R. S. Davis, J. Appl. Phys. 34, 619 (1963).

    Google Scholar 

  72. J. J. Randall and W. J. Benard, J. Appl. Phys. 35, 1317 (1964).

    Google Scholar 

  73. W. D. Treadwell and A. Obrist, Helv. Chim. Acta 26, 1816 (1943).

    Google Scholar 

  74. I. Olefjord and L. Nyborg, Powder Metall. 28, 237 (1985).

    Google Scholar 

  75. I. Olefjord and L. Nyborg, Powder Metall. 31, 33 (1988).

    Google Scholar 

  76. L. S. Darken and R. S. Gurry, Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 349.

    Google Scholar 

  77. A. Nylund and I. Olefjord, Mater. Sci. Eng. A134, 1225 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özbilen, S., Ünal, A. & Sheppard, T. Influence of Atomizing Gases on the Oxide-Film Morphology and Thickness of Aluminum Powders. Oxidation of Metals 53, 1–23 (2000). https://doi.org/10.1023/A:1004505728950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004505728950

Navigation