Skip to main content
Log in

Shock-induced phase transitions among SiC polytypes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of recovery experiments was conducted using a propellant single-stage gun on starting materials of both α-SiC and β-SiC. X-ray examination on the recovered samples indicated that obvious polytype transformations among 3C, 6H, and 15R took place. To the α-SiC starting material, 15R tends to increase and 6H tends to decrease, while a small amount of α-SiC form transforms to 3C type, along with increasing the shock temperature and pressure. X-ray diffraction analysis showed that the β-SiC polytype is transformed into rhombohedral forms. From results of both types of SiC samples, rhombohedral polytypes seem to be the favored shock modification. The effects of shock pressure and shock temperature and their heterogeneous distribution on these polytype transitions are discussed in detail. Analysis showed that these polytype transitions resulted from the stacking sequence changes of SiC atom layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Spencer, et al. “Proceedings of the Fifth Conference on Silicon Carbide and Related Materials,” IOP Conf. Proc, No. 137 (Institute of Physics and Physical Society, Bristol, 1994) p. 1.

    Google Scholar 

  2. A. Addamiano, in “Silicon Carbide-1973,” edited byR. C. Marshal, J. W. Faust, Jr., and C. E. Ryan (University of South Carolina, Columbia, 1974) p. 179.

    Google Scholar 

  3. Z. Inoue and Y. Inomata, J. Crystal Growth 50 (1980) 779.

    Google Scholar 

  4. H. N. Baumann, Jr., Electro-Chem. Soc. 99 (1952) 109.

    Google Scholar 

  5. W. F. Knippenberg and G. Verspui, Mat. Res. Bull. (Special Issue 4 (1969) 44.

    Google Scholar 

  6. E. D. Whitney and P. T. B. Shafffer, High Temperatures-High Pressures 1 (1969) 107.

    Google Scholar 

  7. K. StrÖssner, M. Cardona, and W. J. Choyke, Sol. State Comm. 63 (1987) 113.

    Google Scholar 

  8. A. F. Goncharov, E. V. Yakovenko, and S. M. Stishov, JETP Lett. 52 (1990) 9491.

    Google Scholar 

  9. S. Shinozoki, R. M. Williams, B. N. Juterbock, W. T. Donlon, J. Hangas, and C. R. Peters, ACS Ceramic Bull. 64 (1985) 1389.

    Google Scholar 

  10. J. Liu and Y. K. Vohra, Phys. Rev. Lett. 72 (1994) 4105.

    Google Scholar 

  11. M. Yoshida, A. Onodera, M. Ueno, K. Takemura. and O. Shimopmura, Phys. Rev. B48 (1993) 10587.

    Google Scholar 

  12. T. Sekine and T. Kobayashi, ibid. B55 (1997) 8034.

    Google Scholar 

  13. K. Kondo, S. Soga, iA. Sawaoka, and W. Araki, J. Mater. Sci. 20 (1985) 1033.

    Google Scholar 

  14. H. Jagodzinski and H. Arnold, in “Silicon Carbide,” edited byJ. R. O'Connor and J. Smiltents (Pergamon Press, New York, 1960) p. 136.

    Google Scholar 

  15. L. K. Frevel, D. R. Petersen, and C. K. Saha, J. Mater. Sci. 27 (1992) 1913.

    Google Scholar 

  16. J. Ruska, L. J. Gauckler, J. Lorenz, and H. U. Rexer, ibid. 14 (1979) 2013.

    Google Scholar 

  17. T. Sekine, M. Akaishi, N. Setaka, and K. Kondo, ibid. 22 (1987) 3615.

    Google Scholar 

  18. S. P. Marsh (ed), “LASL Shock Hugoniot Data” (University of California, Berkeley, 1980) p. 329.

    Google Scholar 

  19. Y. Horie and A. B. Sawaoka, “Shock Compression Chemistry of Materials” (KTK Scientific Publisher, Tokyo, 1993) p. 283.

    Google Scholar 

  20. M. Neuberger, Mater. Res. Bull. (Special Issue) 4 (1969) 365.

    Google Scholar 

  21. B. E. Warren, “X-Ray Diffraction” (Addison-Wesley Publishing Company, Inc, Massachusetts, 1969) p. 253.

    Google Scholar 

  22. S. S. Shang and M. A. Meyers, J. Mater. Sci. 31 (1996) 252.

    Google Scholar 

  23. D. K. Potter and T. J. Ahrens, Appl. Phys. Lett. 51 (1987) 317.

    Google Scholar 

  24. G. S. Zhdanov, Compt. Rend. Acad. Sci., URSS 48 (1945) 43.

    Google Scholar 

  25. H. Jagodzinski, Acta Cryst. 7 (1954) 300.

    Google Scholar 

  26. A. R. Verma and P Krishana, “Polymorphism and Polytypism in Crystals” (JohnWiley & Sons, Inc., New York, 1960) pp. 60, 266.

    Google Scholar 

  27. W. F. Knippenberg, Philips Res. Rept. 18 (1963) 161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.Q., Sekine, T., Kobayashi, T. et al. Shock-induced phase transitions among SiC polytypes. Journal of Materials Science 33, 5883–5890 (1998). https://doi.org/10.1023/A:1004482922441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004482922441

Keywords

Navigation