Skip to main content
Log in

Microstructure and crystal structure development in porous titania coatings prepared from anhydrous titanium ethoxide solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous titania coatings were prepared by spin coating anhydrous titanium ethoxide–ethanol solutions in a controlled humidity atmosphere. Ti ethoxide reacted with atmospheric moisture during deposition, to form amorphous particles (approximately 200 nm), a dense layer or a combination of the two, depending on the processing conditions. Relatively humid atmospheres, low concentrations of Ti ethoxide in the coating solution and slow spinning rates favoured particle formation. These particulate coatings were typically composed of agglomerated particle clusters. Agglomeration could be prevented by adding hydroxypropyl cellulose to alkoxide solution to act as a steric stabilizer for newly formed particles. During thermal treatment, the coatings crystallized into the anatase phase and then transformed into the rutile structure at higher temperatures. The anatase–rutile transformation in porous coatings occurred over a range of 850–1150°C and strongly depended on microstructural features. More porous coatings with larger particle clusters transformed to rutile at lower temperatures. Tensile stress in the coating caused by constrained shrinkage inhibited the phase transformation. The substrate constraint slowed the transformation rate in coatings relative to free powder. Stress relief through rupture of particle cluster connections allowed transformation to occur at lower temperatures. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Brinker and G. W. Scherer, “SolGel Science: The Physics and Chemistry of Sol—Gel Processing” (Academic Press, New York, 1990).

    Google Scholar 

  2. Y.-J. Kim and L. F. Francis, J. Amer. Ceram. Soc. 76 (1993) 737.

    Google Scholar 

  3. L. F. Francis, Materials and Manufacturing processes, 12 (1997) 963.

    Google Scholar 

  4. M. A. Anderson, M. J. Gieselnann and Q. Xu, J. Membrane Sci. 39 (1988) 243.

    Google Scholar 

  5. V. T. Zaspalis, W. Van Praag, K. Keizer, J. G. Van Ommen, A. J. Burggraaf and J. R. H. Ross, J. Mater. Sci. 27 (1992) 1023.

    Google Scholar 

  6. W. J. Kaiser and E. M. Logothetis, SAE Technical Paper Series, No. 830 167. (Society of Automotive Engineers, Warrendale, PA).

  7. C. J. Brinker, A. J. Hurd and K. J. Ward, in “Ultrastructure Processing of Advanced Ceramics”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1988) p. 223.

    Google Scholar 

  8. S. S. Prakash, C. J. Brinker and A. J. Hurd, J. Non-Cryst. Solids 190 (1995) 264.

    Google Scholar 

  9. K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube and R. Feile, Thin Solid Films 197 (1991) 279.

    Google Scholar 

  10. B. E. Yoldas and T. W. O'Keeffe, Appl. Opt. 18 (1979) 3133.

    Google Scholar 

  11. H. Dislich, in “Sol—Gel Technology for Thin Films, Fibers, Performs, Electronics, and Speciality Shapes”, edited by L. C. Klein (Noyes Pub., Park Ridge, NJ, 1988) p. 50.

    Google Scholar 

  12. A. Takami, Amer. Ceram. Soc. Bull. 67 (1988) 1956.

    Google Scholar 

  13. E. Hachfeld, Y.-J. Kim and L. F. Francis, Mater. Lett. 18 (1933) 141.

    Google Scholar 

  14. Y.-J. Kim, N. M. Wara, B. V. Velamakanni and L. F. Francis, “Ceramic Transactions, Vol. 43: Ferroic Materials: Design, Preparation and Sensor Characteristics”, edited by A. S. Bhalla, K. M. Nair, I. K. Lloyd, H. Yanagida and D. A. Payne (American Ceramic Society, Westerville, OH, 1994) p. 183.

    Google Scholar 

  15. N. D. S. Mohallem and M. A. Aegerter, J. Non-Cryst. Solids 100 (1988) 526.

    Google Scholar 

  16. N. Özer, Thin Solid Films 214 (1992) 17.

    Google Scholar 

  17. E. A. Barringer and H. K. Bowen, Langmuir 1 (1985) 414.

    Google Scholar 

  18. J. H. Jean and T. A. Ring, ibid. 2 (1986) 251.

    Google Scholar 

  19. J.-L. Look and C. F. Zukoski, J. Amer. Ceram. Soc. 75 (1992) 1587.

    Google Scholar 

  20. J.-L. Look, G. H. Bogush and C. F. Zukoski, Faraday Discuss. Chem. Soc. 90 (1990) 345.

    Google Scholar 

  21. M. I. Diaz-guemes, T. G. Carreno, C. J. Serna and J. M. Palacios, J. Mater. Sci. Lett. 7 (1988) 671.

    Google Scholar 

  22. J. H. Jean and T. A. Ring, Amer. Ceram. Soc. Bull. 66 (1987) 1517.

    Google Scholar 

  23. L. H. Edelson and A. M. Glaeser, J. Amer. Ceram. Soc. 71 (1988) 225.

    Google Scholar 

  24. B. D. Craig, L. F. Francis and L. Abrams, ibid. 79 (1996) 3317.

    Google Scholar 

  25. J. Goworek and W. Stefaniak, Colloids and Surfaces 55 (1991) 359.

    Google Scholar 

  26. M. E. Thomas, M. P. Hartnett and J. E. Mckay, J. Vac. Sci. Technol. A6 (1988) 2570.

    Google Scholar 

  27. G. G. Stoney, Proc. Roy. Soc. Lond. A82 (1949) 172.

    Google Scholar 

  28. M. Ohring, “The Materials Science of Thin Films” (Academic Press, New York, 1992).

    Google Scholar 

  29. R. Glang, R. A. Holmwood and R. L. Rosenfeld, Rev. Sci. Instr. 36 (1965) 7.

    Google Scholar 

  30. C. J. Lawrence, Phys. Fluids A2 (1990) 453.

    Google Scholar 

  31. Pemberton and Mash, J. Chem. Thermodynam. 10 (1978) 867.

    Google Scholar 

  32. J.-L. Look and C. F. Zukoski, J. Amer. Ceram. Soc. 78 (1995) 21.

    Google Scholar 

  33. K.-N. P. Kumar, K. Kelzer, A. J. Burggraaf, T. Okubo and H. Nagamoto, J. Mater. Chem. 3 (1993) 1151.

    Google Scholar 

  34. K.-N. P. Kumar, K. Kelzer and A. J. Burggraaf, ibid. 3 (1993) 1141.

    Google Scholar 

  35. B. E. Yoldas, J. Mater. Sci. 21 (1986) 1087.

    Google Scholar 

  36. K. Kato, T. Tsuzuki, T. Taoda, Y. Torii, T. Kato and Y. Butsugan, ibid. 29 (1994) 5911.

    Google Scholar 

  37. S. G. Croll, J. Appl. Polym. Sci. 23 (1979) 847.

    Google Scholar 

  38. T. J. Garino and H. K. Bowen, J. Amer. Ceram. Soc. 73 (1990) 251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Francis, L.F. Microstructure and crystal structure development in porous titania coatings prepared from anhydrous titanium ethoxide solutions. Journal of Materials Science 33, 4423–4433 (1998). https://doi.org/10.1023/A:1004476930349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004476930349

Keywords

Navigation