Skip to main content
Log in

Effects of inoculation of EPS-producing Pantoea agglomerans on wheat rhizosphere aggregation

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effect of bacteria secreting an extracellular polysaccharide (EPS) on the physical properties of rhizosphere soil has been investigated as a function of soil water content by using an approach in which wheat seedlings were inoculated with a strain Pantoea agglomerans (NAS206) selected from the rhizosphere of wheat (Triticum durum L.) growing in a Moroccan vertisol. Colonization by strain NAS206 occurred both on the rhizoplane and the root-adhering soil as opposed to the bulk soil. The intense colonization of the wheat rhizosphere by these EPS-producing bacteria was associated with significant aggregation and stabilization of root-adhering soil, as shown by the combined increases of (i) aggregate mean weight diameter (MWD), (ii) aggregate macro-porosity (pore throat diameter between 10 and 80 μm), (iii) adhering soil:root mass ratio (RAS/RT), (iv) water-stable >200 μm aggregates and (v) 0.1–2 μm elementary clayey micro-aggregates. Biological exudation and capillary pressure interactions leading to root-adhering soil aggregation are also analysed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achouak W, Heulin T, Villemin G and Balandreau J 1994Root colonization by symplasmata-forming Enterobacter agglomerans. FEMS Microbiol. Ecol. 13, 287–294.

    Article  Google Scholar 

  • Amellal N, Villemin G, Burtin G, Bartoli F and Heulin T 1997Effects of EPS-producing bacteria on a rhizosphere clayey soil: The ultra-structural approach. (2ième colloque de la Société Française des Microscopies, Nancy) Biol. Cell. 89, 158.

    Google Scholar 

  • Amellal N, Burtin G, Bartoli F and Heulin T 1998Colonization of wheat roots by an EPS-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 64, 3740–3747.

    PubMed  CAS  Google Scholar 

  • Bartoli F, Phillipy R, Doirisse M, Niquet S and Dubuit M 1991 Structure and self-similarity in silty and sandy soils: the fractal approach. J. Soil Sci. 42, 167–185.

    Article  Google Scholar 

  • Bartoli F, Burtin G and Herbillon A J 1992Dissaggregation and clay dispersion of oxisols: Na resin, a recommended methodology. Geoderma 49, 301–317.

    Article  Google Scholar 

  • Blum A and Johnson J W 1992Transfer of water from roots into dry soil and the effect on wheat water relations and growth. Plant Soil 145, 141–149.

    Article  Google Scholar 

  • Bruand A, Cousin I, Nicoullaud B, Duval O and Bégon J C 1996 Backscattered Electron Scanning Image of Soil Porosity for Analyzing Soil Compaction around Roots. Soil Sci. Soc. Am. J. 60, 895–901

    Article  CAS  Google Scholar 

  • Chapman S J and Lynch J M 1985Polysaccharide synthesis by capsular microorganisms in coculture with cellulolytic fungi on straw and stabilization of soil aggregates. Biol. Fert. Soils 1, 161–166.

    Article  CAS  Google Scholar 

  • Chenu C and Guérif J 1991Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Sci. Soc. Am. J. 55, 1076–1080.

    Article  CAS  Google Scholar 

  • El Hafid R, Smith D H, Karrou M and Samir K 1998Root and shoot growth, water use efficiency of spring durum wheat under earlyseason drought. Agronomie 18, 181–195.

    Google Scholar 

  • Gouzou L, Burtin G, Philippy R, Bartoli F and T. Heulin 1993Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56, 476–491.

    Article  Google Scholar 

  • Greacen E L, Farrell D A and Cockroft B 1968Soil Resistance of metal probes and plant roots. In Transactions of the 9th International Congress in Soil Science, pp 769–779.

  • Gregory P J, Palta J A and Batts G R 1997Root systems and root: mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187, 221–228.

    Article  Google Scholar 

  • Haynes R J and Francis G S 1993Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. J. Soil Sci. 44, 665–675.

    Article  CAS  Google Scholar 

  • Hiltner L 1904Ñber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb. Dstch Landwirt. Ges. 98, 59–78.

    Google Scholar 

  • Lawrence G P, Payne D and Greenland D J 1979Pore size distribution in critical-point and freeze-dried aggregates from clay subsoils. J. Soil Sci. 30, 499–516.

    Article  CAS  Google Scholar 

  • Lynch J M 1990The Rhizophere. John Wiley and Sons, Chicester, UK. 458 p.

    Google Scholar 

  • Lynch J M and Whipps J M 1990Substrate flow in the rhizosphere. Plant Soil 129, 1–10.

    Article  CAS  Google Scholar 

  • McCully M E and Canny M J 1989Pathways and processes water and nutrient movement in roots. Plant Soil 111, 159–170.

    Article  Google Scholar 

  • MacFall J S and Johnson G A 1994Use of magnetic resonance imaging in the study of plants and soils. In Tomography of Soil– Water–Root processes. Eds S H Anderson and J W Hopmans. Soil Sci. Soc. Am., Madison, USA. pp 99–113.

    Google Scholar 

  • Materechera S A, Kirby J M, Alston A M and Dexter A R 1994 Modification of soil aggregation by watering and roots growing through beds of large aggregates. Plant Soil 160, 57–66.

    Article  Google Scholar 

  • Newman A C D and Thomasson A J 1979Rothamsted studies of soil structure III. Pore size distributions and shrinkage processes. J. Soil Sci. 30, 415–439.

    Article  Google Scholar 

  • Postma J J, van Veen A and Walter S 1989Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar trifolii. Soil Biol. Biochem. 21, 437–442.

    Article  Google Scholar 

  • Reid C P P 1974Assimilation, distribution and root exudation of 14C by poderosa pine seedling under induced water stress. Plant Physiol. 54, 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Roberson E B and Firestone M 1992Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291.

    PubMed  CAS  Google Scholar 

  • Rouiller J, Burtin G and Souchier B 1972La dispersion des sols dans l'analyse granulométrique, méthode utilisant les résines échangeuses d'ions. Bull ENSAIA Nancy, XIV, Fasc. II, 193–205.

    Google Scholar 

  • Rouiller J, Brethes A, Burtin G and Guillet B 1984Fractionnement des argiles par ultracentrifugation en continu: Evolution des illites en milieu podzolique. Sci. Géol. Bull. 37, 319–331.

    CAS  Google Scholar 

  • Rovira A D and Davey C B 1974Biology of the rhizosphere. In The Plant Root and its Environment. Ed. E W Carson, pp 153–204. University Press of Virginia, Charlottesville, VA.

    Google Scholar 

  • Tisdall J M and Oades J M 1979Stabilization of soil aggregates by the root systems of rye-grass. Aust. J. Soil Research 17, 429–441.

    Article  Google Scholar 

  • Van Gestel M V, Merckx R and Vlassak K 1993Microbial biomass responses to soil drying and rewetting: the fate of fast-and slowgrowing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123.

    Article  Google Scholar 

  • Vancura V and Garcia J L 1969Root exudates of reversibly wilted millet plants (Panicum miliaceum L.) Oecol. Plant 4, 93–98.

    Google Scholar 

  • Villemin G and Toutain F 1987Méthode de fixation d'échantillons organo-minéraux de sols pour la microscopie électronique à transmission. In Micromorphology des sols. Eds N Fedoroff, L M Bresson and M A Courty. pp 43–48. AFES-AISS Publications, Paris.

    Google Scholar 

  • Wesseling J and van Wijk W R 1957Soil physical conditions in relation to drain depth. In Drainage of Agricultural Lands. Ed. J N Lutin. pp 461–504. Agronomy Monograph 7, American Society of Agronomy, Madison, WI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amellal, N., Bartoli, F., Villemin, G. et al. Effects of inoculation of EPS-producing Pantoea agglomerans on wheat rhizosphere aggregation. Plant and Soil 211, 93–101 (1999). https://doi.org/10.1023/A:1004403009353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004403009353

Navigation