Skip to main content
Log in

The effect of tempering temperature on mechanical properties and microstructure of low alloy Cr and CrMo steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two low alloy Cr and CrMo steels with similar levels of carbon, manganese and chromium have been studied to determine the effect of tempering temperature on the mechanical properties and microstructure. The quenching and tempering of steels were carried out using a high-speed dilatometer. The steels were quenched at the average cooling rate of 30 K s-1 in the temperature range from 1123 to 573 K by flowing argon and tempered at 673, 823 and 973 K. The martensite of steels formed during quenching was of entire lath morphology with 2 vol% retained austenite. It was found that after tempering at 973 K the Cr steel contained only orthorhombic cementite, while the CrMo steel contained the cementite and hexagonal Mo2C particles in the ferrite matrix. At the same tempering conditions, the CrMo steel shows higher strength but lower ductility as compared to those of Cr steel. It is shown that this difference results from finer prior austenite grain, substructure within matrix and precipitate dispersion strengthening, primarily by Mo2C. Transmission electron microscopy (TEM) bright- and dark-field micrographs as well as selected area diffraction pattern analysis of orientation relationship showed that the cementite precipitated from the ferrite matrix. Fractography analysis showed that the morphology fracture surface was changed by increasing tempering temperature. Tempering at 973 K obtained ductile fracture by the microvoid coalescence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Grobner, D. L. Sponseller and D. E. Diesburg, Mater. Perf. 14 (1975) 35.

    Google Scholar 

  2. N. Gope, A. Chatterjee, T. Mukherjee and D. S. Sarma, Metall. Trans. 24A (1993) 315.

    Google Scholar 

  3. P. J. Naylor, ibid. 10A (1979) 861.

    Google Scholar 

  4. Y. Tomita and K. Okabayashi, ibid. 17A (1986) 1203.

    Google Scholar 

  5. B. Uhrenius, in “Hardenability concepts with applications to steel”, edited by D. V. Doane and J. S. Kirkaldy (AIME, Warrendale, 1978) p. 28.

    Google Scholar 

  6. R. G. Baker and J. Nutting, J. Iron Steel Inst. 192 (1959) 257.

    Google Scholar 

  7. M. C. Murphy and G. D. Branch, ibid. 209 (1971) 546.

    Google Scholar 

  8. J. Pilling and N. Ridley, Metall.Trans. 13A (1982) 557.

    Google Scholar 

  9. V. A. BisŠ and T. Wada, ibid. 16A (1985) 109.

    Google Scholar 

  10. B. D. Craig, Metall.Trans. 13A (1982) 23.

    Google Scholar 

  11. J. M. Chilton and P. M. Kelly, Acta Metall. 16 (1968) 637.

    Google Scholar 

  12. Y. Tomita and K. Okabayashi, Metall Trans. 18A (1987) 115.

    Google Scholar 

  13. M. Enomoto, S. H. Song, K. Yamada, M. Shimizu and T. Kunio, J. Soc. Mech. Eng. 40 (1974) 407.

    Google Scholar 

  14. S. Weissmann (ed.) “Search manual for selected powder diffraction data for metals and alloys”, (JCPDS International center for Diffraction Data, Pennsylvania, Swarthmore, 1978).

    Google Scholar 

  15. M. GojiĆ, A. PreloŠČan and M. Malina, Metalurgija 30 (1991) 161.

    Google Scholar 

  16. B. C. Craig, Metall. Trans. 13A (1982) 1099.

    Google Scholar 

  17. M. Hillert, ISIJ Int. 35 (1995) 1134.

    Google Scholar 

  18. L. J. Habraken and M. Economopoulos, “Transformation and hardenability in steels” (Climax Molybdenum Company, Ann Arbor, MI, 1967) p. 69.

    Google Scholar 

  19. M. E. Bush and P. M. Kelly, Acta metall. 19 (1971) 1363.

    Google Scholar 

  20. H. P. Offer, J. F. Copeland, J. L. Yuen and W. D. Challenger, in “Effects of melting and processing variables on the mechanical properties of steels”, edited by G. V. Smith (ASME, New York, NY, 1977) p. 195.

    Google Scholar 

  21. R. L. Klueh and J. L. Griffith, J. Mater. Energy Syst. 3 (1981) 26.

    Google Scholar 

  22. D. L. Sponseller, R. Garber and T. B. Cox, in Proceedings of the First International Conference on Current Solutions to Hydrogen Problems in Steels, Washington DC, November 1982, edited by C. G. Interrante and G. M. Pressouyre (ASM, Metals Park, Ohio, 1982) p. 200.

    Google Scholar 

  23. R. Kaspar, U. Lotter and C. Biegus, Steel Res. 65 (1994) 242.

    Google Scholar 

  24. M. Sarikaya, B. G. Steinberg and G. Thomas, Metall. Trans. 13A (1982) 2227.

    Google Scholar 

  25. B. V. N. Rao and G. Thomas, ibid. 11A (1980) 441.

    Google Scholar 

  26. J. Yu, ibid. 20A (1989) 1561.

    Google Scholar 

  27. R. D. Griffin, R. A. Dodd, G. L. Kulcinski and D. S. Gelles, ibid. 21A (1990) 1853.

    Google Scholar 

  28. J. Janovec, A. Vyrostkova and A. Holy, J. Mater. Sci. 27 (1992) 6564.

    Google Scholar 

  29. H. Tsubakino and H. I. Aaronson, Metall. Trans. 18A (1987) 2047.

    Google Scholar 

  30. J. B. Baird and A. Jamieson, J. Iron Steel Inst. (London) 210 (1972) 847.

    Google Scholar 

  31. R. L. Klueh, Mater. Sci. Engng 35 (1978) 239.

    Google Scholar 

  32. P. L. Winter and R. L. Woodward, Metall.Trans. 17A (1986) 307.

    Google Scholar 

  33. S. Saroja, M. Vijayalakshimi and V. S. Raghunathan, {ti J. Mater. Sci.} 27 (1992) 2389.

  34. R. O. Ritchie, Metall. Trans. 8A (1977) 1131.

    Google Scholar 

  35. S. Yu and C. J. McMahon Jr., ibid. 11A (1980) 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gojic, M., Kosec, L. & Matkovic, P. The effect of tempering temperature on mechanical properties and microstructure of low alloy Cr and CrMo steel. Journal of Materials Science 33, 395–403 (1998). https://doi.org/10.1023/A:1004375914591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004375914591

Keywords

Navigation