Skip to main content
Log in

Hexavalent chromium in tricalcium silicate: Part II Effects of CrVI on the hydration of tricalcium silicate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The composition and structure of hydrated tricalcium silicate (C3S)⊛ pastes admixed with CrVI have been studied. The resultant mixture simulates CrVI waste forms stabilized in ordinary Portland cement. Scanning electron microscopy and transmission electron microscopy were used to identify the microstructural changes accompanying the addition of CrVI solutions to C3S. Energy-dispersive X-ray spectroscopy was used to probe the distribution of chromium in the phases within the hazardous waste forms. Elucidation of the molecular structure of the reaction products was accomplished with Fourier transform infrared and nuclear magnetic resonance spectroscopies.

CrVI was found to be contained in the waste form as soluble Ca2CrO5·3H2O and partially chemically bonded within the calcium silicate hydrate (C–S–H) phase. CrVI was also found to increase the condensation of C–S–H and porosity of the waste form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. F. W. Taylor, “Cement chemistry” (Academic Press, London, 1990).

    Google Scholar 

  2. D. L. Kantro, J. Test. Eval. 3 (1975) 312.

    Google Scholar 

  3. I. Jawed, J. Skanly and J. F. Young, in “Structure and performance of cement,” edited by P. Barnes (Applied Science, Barking, Essex 1983) p. 237.

    Google Scholar 

  4. N. L. Thomas, J. Mater. Sci. 22 (1987) 3328.

    Google Scholar 

  5. O. E. Omotoso, D. G. Ivey and R. Mikula, in “Treatment and minimization of heavy metal-containing wastes, edited by J.P. Hager (Minerals, Metals and Materials Society, Warrendale, PA, 1995) p. 129.

    Google Scholar 

  6. R. Kondo, M. Daimon, E. Sakai and H. J. Oshiyama, J. Appl. Chem. Biotechnol. 27 (1977) 191.

    Google Scholar 

  7. H. G. Midgley, Cem. Concr. Res. 9 (1979) 77.

    Google Scholar 

  8. I. Odler and H. Dorr, Cem. Concr. Res. 9 (1979) 239.

    Google Scholar 

  9. A. Bentur and R. L. Berger, J. Amer. Ceram. Soc. 62 (1979) 117.

    Google Scholar 

  10. V. S. Ramachandra, Cem. Concr. Res. 9 (1979) 677.

    Google Scholar 

  11. R. B. Williamson, Prog. Mater. Sci. 15 (1972) 189.

    Google Scholar 

  12. S. Diamond, in “Proceedings of the Conference on Hydraulic Cement Pastes; Their Structure and Properties,” (Cement and Concrete Association, London, 1976) p. 2.

    Google Scholar 

  13. S. Goto, M. Daimon, G. Hosaka and R. Kondo, J. Amer. Ceram. Soc. 59 (1976) 281.

    Google Scholar 

  14. B. Marchese, Cem. Concr. Res. 7 (1977) 9.

    Google Scholar 

  15. Idem. J. Amer. Ceram. Soc. 61 (1978) 349.

    Google Scholar 

  16. G. W. Groves, Mater. Res. Soc. Symp. Proc. 85 (1987) 3.

    Google Scholar 

  17. M. S. Stucke and A. J. Majumdar, Cem. Concr. Res. 7 (1977) 711.

    Google Scholar 

  18. K. L. Scrivener, H. H. Patel, P. C. Pratt and C. J. Parrot, Mater. Res. Soc. Symp. Proc. 85 (1987) 67.

    Google Scholar 

  19. A. Grudemo, in “The chemistry of cement,” Part I, edited by H.F.W. Taylor (Academic Press, London, 1964) p. 371.

    Google Scholar 

  20. D. D. Double, Mater. Sci. Engng 12 (1973) 29.

    Google Scholar 

  21. F. W. Lawrence Jr and A. A. De Carvalho, J. Amer. Ceram. Soc. 57 (1974) 144.

    Google Scholar 

  22. B. J. Dalgleish and K. Ibe, Cem. Concr. Res. 11 (1981) 729.

    Google Scholar 

  23. H. M. Jennings, B. J. Dalgleish and P. L. Pratt, J. Amer. Ceram. Soc. 64 (1981) 567.

    Google Scholar 

  24. S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, Mater. Res. Soc. Symp. Proc. 85 (1987) 13.

    Google Scholar 

  25. D. G. Ivey and M. Neuwirth, Cem. Concr. Res. 19 (1989) 642.

    Google Scholar 

  26. H. F. W. Taylor and D. E. Newbury, Cem. Concr. Res. 14 (1984) 93.

    Google Scholar 

  27. J. A. Gard, K. Mohan, H. F. W. Taylor and G. Cliff, J. Amer. Ceram. Soc. 63 (1981) 336.

    Google Scholar 

  28. K. Mohan and H. F. W. Taylor, J. Amer. Ceram. Soc. 64 (1981) 717.

    Google Scholar 

  29. A. N. Lazarev, “Vibrational spectra and structure of silicates” (Consultant Bureau, New York, 1972).

    Google Scholar 

  30. F. Libeau, “Structural chemistry of silicates” (Springer, Berlin, 1985).

    Google Scholar 

  31. F. Matossi, J. Chem. Phys. 17 (1949) 679.

    Google Scholar 

  32. J. Etchepare, Spectrochim. Acta A 26 (1970) 2147.

    Google Scholar 

  33. M. Handke, Appl. Spectrosc. 40 (1986) 871.

    Google Scholar 

  34. E. Lippmaa, M. Magi, A. Samson, G. Engelharrdt and A. R. Grimmer, J. Amer. Chem. Soc. 102 (1980) 4889.

    Google Scholar 

  35. E. Lippmaa, M. Magi, M. Tarmak, W. Wieker and A. R. Grimmer, Cem. Concr. Res. 12 (1982) 597.

    Google Scholar 

  36. N. J. Clayden, C. M. Dobson, G. W. Groves, C. J. Hayes and S. A. Rodger, Brit. Ceram. Soc. Proc. 35 (1984) 55.

    Google Scholar 

  37. J. R. Barnes, A. D. H. Clague, N. J. Clayden, C. M. Dobson, C. J. Hayes, G. W. Groves and S. A. Rodger, J. Mater. Sci.Lett. 4 (1985) 1293.

    Google Scholar 

  38. A. R. Grimmer and F. Von Lampe, Chem. Phys. Lett. 132 (1986) 549.

    Google Scholar 

  39. J. Hjorth, J. Skibsted and H. J. Jakobsen, Cem. Concr. Res. 18 (1988) 789.

    Google Scholar 

  40. S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, J. Amer. Ceram. Soc. 71 (1988) 91.

    Google Scholar 

  41. G. Parry-Jones, A. J. Al -Tayyib and A. I. Almana, Cem. Concr. Res. 18 (1988) 229.

    Google Scholar 

  42. Idem., Cem. Concr. Res. 19 (1989) 228.

  43. H. Ishida, Y. Okada and T. Mitsuda, J. Amer. Ceram. Soc. 75 (1992) 359.

    Google Scholar 

  44. F. K. Carteledge, Private communication.

  45. J. D. Ortego, Y. Barroeta, F. K. Cartledge and H. Akhter, Environ. Sci. Technol. 25 (1991) 1171.

    Google Scholar 

  46. O. E. Omotoso, D. G. Ivey and R. J. Mikula, J. Mater. Sci. 33 (1998) 507.

    Google Scholar 

  47. D. H. CampbeLL and W. U. Ahmed, Microstruct. Sci. 7 (1979) 369.

    Google Scholar 

  48. D. G. Ivey, R. J. Mikula, W. W. Lam, M. Neuwirth, D. J. Conrad and R. B. Heimann, in “Proceedings of the Symposium on Cement Industry Solutions to Waste Management” (Canadian Portland Cement Association, Calgary, 1992).

    Google Scholar 

  49. K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds” (Wiley, New York, 4th Edn, 1986).

    Google Scholar 

  50. J. A. Gadsden, “Infrared spectra of minerals and related inorganic compounds” (Butterworth, London, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omotoso, O.E., Ivey, D.G. & Mikula, R. Hexavalent chromium in tricalcium silicate: Part II Effects of CrVI on the hydration of tricalcium silicate. Journal of Materials Science 33, 515–522 (1998). https://doi.org/10.1023/A:1004356805022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004356805022

Keywords

Navigation