Skip to main content
Log in

Phenomenology of the size effect in hardness tests with a blunt pyramidal indenter

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Further detailed analysis of the indentation size effect exhibited by some single-phase metals leads to a new, very accurate, descriptive equation. This affords consistent and realistically low evaluation of macrohardness from micro-indentation test data.

The indentation size effect exhibited by fused silica is also matched precisely by the new description, demonstrating a common phenomenology regardless of the different micro-mechanisms sustaining indentation.

Comparison of data from standard and low-load Vicker's tests with data from ultra-micro-indentation with a Berkovich indenter establishes continuity of a monotonic size effect throughout the entire range of indent size.

The observed size effects are consistent with the projected refinement of a previously proposed model of indentation that attributed the effect to varying importance of the constrained flexing at the perimeter of the indent.

The magnitude of the size effect appears to be a measure of the resistance to strain concentration in the perimeter flexure zone. The large size effect for eminently plastic metals indicates that restricted micro-deformation capability is not the major cause. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. SMITH and G. SANDLAND, Proc. Inst. Mech. Engng. 1 (1922) 623.

    Google Scholar 

  2. L. E. SAMUELS, in “Microindentation techniques in materials science and engineering”, edited by Blau and Lawn (ASTM STP 889, 1986) p. 5.

  3. D. TABOR, ibid p. 129

  4. E. MEYER, Zeit. Ver. Deutsch. Ing. 52 (1908) 645.

    Google Scholar 

  5. D. TATE, Trans. Amer. Soc. Metall. 35 (1945) 374.

    Google Scholar 

  6. B. W. MOTT, “Micro-indentation hardness testing” (Butterworths, London, 1956).

    Google Scholar 

  7. H. BUCKLE, Metall. Rev. 4 (1959) 49.

    Google Scholar 

  8. M. ATKINSON, Mater. Sci. Engng. A197 (1995) 165.

    Google Scholar 

  9. Idem., J. Mater. Res. 10 (1995) 2908.

    Google Scholar 

  10. Idem., J. Mater. Sci. 30 (1995) 1728.

    Google Scholar 

  11. P. M. SARGENT, in “Microindentation techniques in materials science and engineering”, edited by Blau and Lawn (ASTM STP 889, 1986) p. 160.

  12. M. ATKINSON and H. SHI, Mater. Sci. Technol. 5 (1989) 613.

    Google Scholar 

  13. H. SHI and M. ATKINSON, J. Mater. Sci. 25 (1990) 2111.

    Google Scholar 

  14. M. ATKINSON, J. Testing and Evaluation 19 (1991) 368.

    Google Scholar 

  15. J. BYSTRZYCKI and R. A. VARIN, Scripta Metall. Mater. 29 (1993) 605.

    Google Scholar 

  16. M. ATKINSON, Int. J. Mech. Sci. 33 (1991) 843.

    Google Scholar 

  17. R. HILL, R. H. LEE and S. J. TUPPER, Proc. Roy. Soc. A188 (1947) 273.

    Google Scholar 

  18. N. ALAM, University of Wollongong, Australia, private communication.

  19. D. DENGEL and E. KROESKE, Materpruf. 18 (1976) 161.

    Google Scholar 

  20. F. FRÖHLICH, P. GRAU and W. GRELLMANN, Phys. Status Solidi (a) 42 (1977) 79.

    Google Scholar 

  21. D. NEWEY, M. A. WILKINS and H. M. POLLOCK, J. Phys. E 15 (1982) 119.

    Google Scholar 

  22. M. F. DOERNER and W. D. NIX, J. Mater. Res. 1 (1986) 601.

    Google Scholar 

  23. T. J. BELL, A. BENDELI, J. S. FIELD, M. V. SWAIN and E. G. THWAITE, Metrologia 28 (1991/2) 463.

    Google Scholar 

  24. M. V. SWAIN, C.S.I.R.O., Sydney, Private communication.

  25. W. C. OLIVER and G. M. PHARR, J. Mater. Res. 7 (1992) 1564.

    Google Scholar 

  26. M. C. SHAW and G. J. DASALVA, J. Engng. Industry 92 (1970) 480.

    Google Scholar 

  27. D. S. DUGDALE, J. Mech. Phys. Solids 3 (1955) 206.

    Google Scholar 

  28. S. J. BULL, T. F. PAGE and E. H. YOFFE, Phil. Mag. Lett. 59 (1989) 281.

    Google Scholar 

  29. T. F. PAGE, W. C. OLIVER and C. J. MCHARGUE, J. Mater. Res. 7 (1992) 450.

    Google Scholar 

  30. S. S. CHIANG, D. B. MARSHALL and A. G. EVANS, J. Appl. Phys. 53 (1982) 298.

    Google Scholar 

  31. A. K. BATTACHARYA and W. D. NIX, Int. J. Sol. Struct. 24 (1988) 881.

    Google Scholar 

  32. R. HILL, B. STORÅKERS and A. B. ZDUNEK, Proc. Roy. Soc. A423 (1989) 301.

    Google Scholar 

  33. W. G. CROUCH, ME (hons) thesis, University of Wollongong, Australia, 1993.

  34. H. LI, A. GHOSH, Y. H. HAN, and R. C. BRADT, J. Mater. Res. 8 (1993) 1028.

    Google Scholar 

  35. H. LI and R. C. BRADT, J. Mater. Sci. 28 (1993) 917.

    Google Scholar 

  36. D. G. HOLLOWAY; “Strength of inorganic glasses”, (Plenum Press, New York 1986) p. 1.

    Google Scholar 

  37. N. GANE and J. M. COX, Phil. Mag. 19 (1970) 881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, M. Phenomenology of the size effect in hardness tests with a blunt pyramidal indenter. Journal of Materials Science 33, 2937–2947 (1998). https://doi.org/10.1023/A:1004350512987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004350512987

Keywords

Navigation