Skip to main content
Log in

Surface free energy components of silica gel determined by the thin layer wicking method for different layer thicknesses of gel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of the thickness of silica gel layer on the penetration rate of selected liquids and, in consequence, on the value of surface free energy components determined by thin layer wicking method was studied. Plates of the following gel thickness were used: 0.25, 0.5, 1.0 and 2.0 mm. Measurements of the penetration rate of apolar liquids, i.e. three alkanes: octane, nonane and decane, diiodomethane, α-bromonaphthalene and two polar liquids: water and formamide were made for this purpose. From the obtained relationships x2=f(t) the suitability of Washburn’s equation in the whole penetration range (9 cm) was confirmed for all thicknesses of porous layers. However, the penetration rate of probe liquids changed with the thickness of the deposited layer, it was mainly dependent on an effective (apparent) radius of the interparticle pores. Using these results and the appropriate form of Washburn’s equation surface free energy components of silica gel 60 (for four thicknesses of layer) were calculated. It was found that values of apolar Lifshitz–van der Waals (γLWs=41.7±0.9 mJ m-2) and polar acid–base (γABs=11.5±0.5 mJ m-2): electron donor (γ-s=50.8±0.9 mJ m-2) and electron acceptor (γ+s≡0.7±0.1 mJ m-2) components of surface free energy were very similar for different layer thicknesses. Even in the case of a 2 mm thick layer reproducible values of both Lifshitz–van der Waals and acid–base component were obtained. It is important when the thin layers are prepared in laboratory conditions, i.e. from suspensions by water evaporating, and the deposited layer is of less controlled thickness. When diiodomethane and α-bromonaphthalene are considered as weakly polar liquids, the value of Lifshitz–van der Waals component of silica gel is very close to γLWs determined from n-alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Unger, “Porous silica” (Amsterdam, Elsevier, 1979).

    Google Scholar 

  2. R. Leboda, Wiad. Chem. 30 (1976) 677.

    Google Scholar 

  3. L. C. Sander and S. A. Wise, CRC Crit. Rev. Anal. Chem. 13 (1987) 299.

    Google Scholar 

  4. J. Nawrocki and B. Buszewski, J. Chromatogr. 449 (1988) 1.

    Google Scholar 

  5. J. Nawrocki, Chromatographia 31 (1991) 177, 193.

    Google Scholar 

  6. R. K. Iler, “The chemistry of silica, solubility, polymeryzation, colloid and surface properties and biochemistry” (New York, Wiley-Interscience, 1979).

    Google Scholar 

  7. L. T. Zhuravlew, Colloids and surfaces 74 (1993) 71.

    Google Scholar 

  8. B. Buszewski, M. Jaroniec, P. Staszczuk and R. K. Gilpin, Yiad. Chem. 49 (1995) 223.

    Google Scholar 

  9. W. Kisielew, “Powierchnostnyje jawlenija w polprowodnikach i dielektrykach” (Nauka, Moskwa, 1970).

    Google Scholar 

  10. M. L. Hair and W. Hertl, J. Phys. Chem. 73 (1969) 4269.

    Google Scholar 

  11. G. Curthoys, V. Ya. Davydow, A. V. Kiselew, S. A. Kiselew and B. V. Kuznetsov, J. Colloid Interface Sci. 48 (1974) 58.

    Google Scholar 

  12. V. Gutman, “The donoracceptor approch to molecular interaction” (New York, London, Plenum Press 1978).

    Google Scholar 

  13. C. H. Rochester and A. Strachan, J. Colloid Interface Sci. 177 (1996) 456.

    Google Scholar 

  14. E. Borello, A. Zecchina and C. Morterra, J. Phys. Chem. 71 (1967) 2938, 2945.

    Google Scholar 

  15. C. Clark-Monks and B. Ellis, J. Colloid Interface Sci. 44 (1973) 37.

    Google Scholar 

  16. F. Boccuzzi, S. colucciA, G. Ghiotti, C. Morterna and A. Zecchina, J. Phys. Chem. 82 (1978) 1298.

    Google Scholar 

  17. P. Fink and B. Camara, Z. Chem. 12 (1972) 35.

    Google Scholar 

  18. H. Knözinger and W. StÄhlin, Prog. Colloid and Polymer Sci. 67 (1980) 33.

    Google Scholar 

  19. C. J. van Oss and R. J. Good, J. Dispersion Sci.Technol. 9(4) (1988) 355.

    Google Scholar 

  20. C. J. van Oss, M. K. Chaudhury and R. J. Good, Separation Sci. Technol. 24(1 & 2) (1989) 15.

    Google Scholar 

  21. C. J. van Oss and R. J. Good, J. Macromol. Chem. A26(8) (1989) 1183.

    Google Scholar 

  22. C. J. van Oss, R. J. Good and H. J. Busscher, J. Dispersion Sci. Technol. 11(1) (1990) 75.

    Google Scholar 

  23. R. J. Good, N. R. Srivata, M. Islam, H. T. L. Huang and C. J. van Oss, In “Acid-Base Interactions” edited by K. L. Mittal and H. R. Anderson, Jr (VSP, Utrecht, 1991).

    Google Scholar 

  24. C. J. van Oss, Colloids Surfaces A: Physicochem. Eng. Aspects 78 (1993) 1.

    Google Scholar 

  25. C. J. van Oss, W. Wu, R. F. Giese and J. O. Naim, Colloids Surfaces B: Biointerfaces 4 (1995) 185.

    Google Scholar 

  26. R. J. Good and C. J. van Oss, In Modern approachs to wettability” edited by M. E. Schrader and G. Loeb (Plenum, New York, 1992).

    Google Scholar 

  27. R. F. Giese, P. M. Constanzo and C. J. van Oss, J. Phys. Chem. Miner 17 (1991) 611.

    Google Scholar 

  28. E. Chibowski and L. HoŁysz, Langmuir 8 (1992) 710.

    Google Scholar 

  29. L. HoŁysz and E. Chibowski, ibid. 8 (1992) 717.

    Google Scholar 

  30. E. Chibowski and F. Gonzalez-Caballero, ibid. 9 (1993) 1069.

    Google Scholar 

  31. L. HoŁysz, Polish. J. Chem. 68 (1994) 2699.

    Google Scholar 

  32. E. Chibowski and L. HoŁysz, J. Colloid Interface Sci. 164 (1994) 245.

    Google Scholar 

  33. E. Chibowski and L. HoŁysz, J. Mater. Sci. Technol. in press.

  34. B. JaŃczuk and E. Chibowski, J. Colloid Interface Sci. 95 (1983) 268.

    Google Scholar 

  35. Cpravochnik khimika, Izd. Khim. Lit., Moscow, 1962 (in Russian).

  36. “Physicochemical handbook” (WNT, Warsaw, 1974) (in Polish).

  37. T. D. Blake and J. M. Haynes, J. Colloid Interface Sci. 30 (1969) 421.

    Google Scholar 

  38. J. Rayss, A. Gorgol, W. PodkoŚcielny, J. Widomski and M. ChoŁyk, J. Adhesion Sci.Technol. in press.

  39. B. JaŃczuk and A. Zdziennicka, J. Mater. Sci. 29 (1994) 3559.

    Google Scholar 

  40. N. B. Hanay, “Chemia ciała stałego” (Warsow, PWN, 1972) (in Polish).

    Google Scholar 

  41. F. M. Fowkes, J. Colloid Interface Sci. 28 (1968) 493.

    Google Scholar 

  42. W. Drost-Hansen, Ind. Eng. Chem. 61 (1969) 10.

    Google Scholar 

  43. P. Staszczuk, B. JaŃczuk and E. Chibowski, Mater. Chem. Phys. 12 (1985) 469.

    Google Scholar 

  44. B. JaŃczuk, E. Chibowski and T. BiaŁopiotrowicz, Chem. Papers 40 (1986) 349.

    Google Scholar 

  45. L. J. M. Schlangen, L. K. Koopal, M. A. Cohen Stuart and J. Lyklema, Colloids Surfaces: Physicochemical and Engineering Aspects 89 (1994) 157.

    Google Scholar 

  46. I. D. Mikheikin, I. A. Abronin, G. M. Zhidorow and V. B. Kazansky, Kinet. Katal. 18 (1977) 1580.

    Google Scholar 

  47. A. Skapski, R. Billups and A. Rooney, J. Chem. Phys. 26 (1957) 1350.

    Google Scholar 

  48. M. Brun, A. Lallemand, J.-F. Quinson and CH. Eyraud, Thermochimica Acta 21 (1977) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HOłYSZ, L. Surface free energy components of silica gel determined by the thin layer wicking method for different layer thicknesses of gel. Journal of Materials Science 33, 445–452 (1998). https://doi.org/10.1023/A:1004340301387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004340301387

Keywords

Navigation