Skip to main content
Log in

Solid particle erosion resistance of ductile wrought superalloys and their weld overlay coatings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elevated temperature (400°C) erosion behaviour of six weld overlay coatings and wrought alloys of similar compositions, was analysed and the relative ranking of their erosion resistance has been developed. Microhardness tests performed on eroded samples showed that all materials experienced significant plastic deformation. No relationship was observed between hardness of the coatings at 400°C and their erosion resistance. A new toughness parameter was developed based on the measured area under the microhardness profile curve, which represents the ability of a material to absorb impact energy. This parameter correlated well with erosion resistance for both weld overlays and wrought alloys. Also, for the wrought alloys, an increase in area under the true stress–strain curve or tensile toughness, corresponded to an increase in erosion resistance. The physical significance of the toughness parameter is discussed along with relationships between hardness, tensile properties and erosion resistance. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lammarre, J. EPRI,October/November (1990) 31.

  2. I. M. Hutchings, R. E. Winter and J. E. Field, Proc. R. Soc. Lond. Ser. A 348 (1976) 379.

    Google Scholar 

  3. I. M. Hutchings and A. V. Levy, Wear 131 (1981) 105.

    Google Scholar 

  4. P. Veerabhadra Rao, S. G. Young and D. H. Buckley, ibid. 85 (1983) 223.

    Google Scholar 

  5. J. G. A. Bitter, ibid. 6 (1963) 5.

    Google Scholar 

  6. G. Sundararajan and P. G. Shewmon, ibid. 84 (1983) 237.

    Google Scholar 

  7. H. C. Meng and K. C. Ludema, ibid. 181–183 (1995) 443.

    Google Scholar 

  8. R. H. Richman and W. P. Mcnaughton, ibid. 140 (1990) 63.

    Google Scholar 

  9. I. Finnie, J. Wolak and Y. Kabil, J. Mater. 2 (1967) 682.

    Google Scholar 

  10. A. V. Levy, “Solid Particle Erosion and Erosion-Corrosion of Metals” (ASM International, Materials Park, OH, 1995) p. 43.

    Google Scholar 

  11. B. F. Levin, J. N. Dupont and A. R. Marder, Wear 181–183 (1995) 810.

    Google Scholar 

  12. A. Levy and D. Jahamir, in “Corrosion-Erosion Behaviour Of Materials”, edited by K. Natesan (Metallurgical Society of AIME, New York, 1980) p. 177.

    Google Scholar 

  13. I. M. Hutchings, J. Appl. Phys. 25 (1986) A212.

    Google Scholar 

  14. Idem., Wear 70 (1981) 269.

    Google Scholar 

  15. T. Foley and A. V. Levy, ibid. 91(1) (1983) 45.

    Google Scholar 

  16. I. Finnie, ibid. 3 (1960) 87.

    Google Scholar 

  17. S. Soderberg, S. Hogmark and H. Swahn, ASLE Trans. 26(2) (1982) 161.

    Google Scholar 

  18. A. V. Reddy, G. Sundararajan, R. Sivakumar and P. Rama Rao, Acta Metall. 32 (1984) 1305.

    Google Scholar 

  19. A. V. Reddy and G. Sundararajan, Wear 111 (1986) 313.

  20. M. Rao and J. R. Keiser, Report. ORNL/TM-11946, Prepared for the US Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN, March 1992.

    Google Scholar 

  21. B. Lindsley, K. Stein and A. R. Marder, Meas. Sci. Technol. 6 (1995) 1169.

    Google Scholar 

  22. ASTM E 384 Standard, Annual Book of ASTM Standards, Vol. 03.01, “Metals Tests Methods and Analytical Procedures” (American Society for Testing and Materials, Philadelphia, PA, 1988).

  23. W. F. Hosford and R. M. Cadell, “Metal Forming Mechanics and Metallurgy”, (Prentice-Hall, Englewood Cliffs, NJ, 1983) p. 80.

    Google Scholar 

  24. ASTM E 8 Standard, Annual Book of ASTM Standards, Vol. 03.01, “Metals Tests Methods and Analytical Procedures” (American Society for Testing and Materials, Philadelphia, PA, 1988).

  25. M. J. Cieslak, T. J. Headley, T. J. Kollie and A. D. Romig Jr, Metall. Trans. 19A (1988) 2319.

    Google Scholar 

  26. J. N. Dupont, Metall. Trans 27A (1996) 3612–3620

    Google Scholar 

  27. Q. H. Zhao, Y. P. Gao, J. H. Devletian, J. M. Mc-Carthy and W. E. Wood, in “International Trends in Welding Science and Technology”, Proceedings of the 3rd International Conference, S. A. David and J. M. Vpitek (ASM, Materials Park, OH, 1992) p. 339.

    Google Scholar 

  28. W. L. Silence, Wear Mater. Vol. I (1985) 77.

    Google Scholar 

  29. M. J. Cieslak, T. J. Headley and A. D. Romig Jr, Metall. Trans 17A (1986) 2035.

    Google Scholar 

  30. “Alloy Phase Diagrams”, ASM Handbook, Vol. 3 (American Society for Metals, Materials Park, OH, 1992) p. 2044.

  31. S. J. Mathews, P. Crook, L. H. Flasche and J. W. Tacket, Weld. J. 70 (1991) 331s.

    Google Scholar 

  32. “Metallography and Microstructures”, ASM Handbook, 9th Edn, Vol. 9 (American Society for Metals, Materials Park, OH, 1985) p. 279.

  33. K. F. J. Heinrich, in “Microbeam Analysis”, Proceedings of the 21st International Conference, edited by A. D. Romig Jr and W. F. Chambers (Albuquerque, New Mexico, 1986) p. 279.

    Google Scholar 

  34. D. Tabor, “The Hardness of Metals” (Clarendon Press, Oxford, 1951).

    Google Scholar 

  35. I. M. Hutchings, J. Phys. D Appl. Phys. 10 (1977) L179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, B.F., Dupont, J.N. & Marder, A.R. Solid particle erosion resistance of ductile wrought superalloys and their weld overlay coatings . Journal of Materials Science 33, 2153–2163 (1998). https://doi.org/10.1023/A:1004331522170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004331522170

Keywords

Navigation