Skip to main content
Log in

Neurotransmitters, Neuropeptides and Calcium Binding Proteins in Developing Human Cerebellum: A Review

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Many endogenous neurochemicals that are known to have important functions in the mature central nervous system have also been found in the developing human cerebellum. Cholinergic neurons, as revealed by immunoreactivities towards choline acetyltransferase or acetylcholinesterase, appear early at 23 weeks of gestation in the cerebellar cortex and deep nuclei. Immunoreactivities gradually increase until the first postnatal month. Enkephalin is localized in the developing cerebellum, initially in the fibers of the cortex and deep nuclei at 16–20 weeks and then also in the Purkinje cells, granule cells, basket cells and Golgi cells at 23 weeks onward. Another neuropeptide, substance P, is localized mainly in the fibers of the dentate nucleus from 9 to 24 weeks but substance P immunoreactivity declines thereafter. GABA, an inhibitory neurotransmitter of the central nervous system, starts to appear at 16 weeks in the Purkinje cells, stellate cells, basket cells, mossy fibers and neurons of deep nuclei. GABA expression is gradually upregulated toward term forming networks of GABA-positive fibers and neurons. Catecholaminergic fibers and neurons are also detected in the cortex and deep nuclei at as early as 16 weeks. Calcium binding proteins, calbindin D28K and parvalbumin, make their first appearance in the cortex and deep nuclei at 14 weeks and then their expression decreases toward term, while calretinin appears later at 21 weeks but its expression increases with fetal age. The above findings suggest that many neurotransmitters, neuropeptides and calcium binding proteins (1) appear early during development of the cerebellum; (2) have specific temporal and spatial expression patterns; (3) may have functions other than those found in the mature neural systems; and (4) may be able to interact with each other during early development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat: II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145: 399–464.

    Google Scholar 

  • Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271: 181–208.

    Google Scholar 

  • Angelatou F, Mitsacos A, Goulas V, Kouvelas ED (1987) L-aspartate and L-glutamate binding sites in developing normal and ‘nervous’ mutant mouse cerebellum. Int J Dev Neurosci 5: 373–381.

    Google Scholar 

  • Asan E (1993) Comparative single and double immunolabelling with antisera against catecholamine biosynthetic enzymes: criteria for the identification of dopaminergic, noradrenergic and adrenergic structures in selected rat brain areas. Histochem 99: 427–442.

    Google Scholar 

  • Austin MC, Schultzberg M, Abbott LC, Montpied P, Evers JR, Paul SM, Crawley JN (1992) Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Mol Brain Res 15: 227–240.

    Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303–308.

    Google Scholar 

  • Barca MA, Toledano A (1982) Histochemical electron microscopic study of the enzyme glutamate dehydrogenase (GD) in post-natal developing cerebellum. Cell Mol Biol 28: 187–195.

    Google Scholar 

  • Becker T, Gombos G, de Barry J (1994) Changes of pharmacological properties of (1S, 3R)-ACPD-sensitive glutamate binding sites in developing mouse cerebellum. Neurochem Int 25: 253–262.

    Google Scholar 

  • Berger B, Verney C, Gaspar P, Febvret A (1985) Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Dev Brain Res 23: 141–144.

    Google Scholar 

  • Billinton A, Upton N, Bowery NG (1999) GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre-and postsynaptic elements respectively in rat and human cerebellum. British J Pharmacol 126: 1387–1392.

    Google Scholar 

  • Bishop GA, Ho RR (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331: 195–207.

    Google Scholar 

  • Bishop GA, Ho RH, King JS (1985a) An immunohistochemical study of serotonin development in the opossum cerebellum. Anat Embryol 171: 325–338.

    Google Scholar 

  • Bishop GA, Ho RH, King JS (1985b) Localization of serotonin immunoreactivity in the opossum cerebellum. J Comp Neurol 235: 301–321.

    Google Scholar 

  • Bishop GA, Ho RH, King JS (1988) A temporal analysis of the origin and distribution of serotoninergic afferents in the cerebellum of pouch young opossums. Anat Embryol 179: 33–48.

    Google Scholar 

  • Bloom FE, Hoffer BJ, Siggins GR (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res 25: 501–521.

    Google Scholar 

  • Brodal A, Hoivik B (1964) Site and mode of termination of primary vestibulocerebellar fibers in the cat. Arch Biol 102: 1–21.

    Google Scholar 

  • Brodal A (1954) Afferent cerebellar connections. In: Jansen J, Brodal A, ed. Aspects of Cerebellar Anatomy, Chapter 2. Oslo: Tanum, pp. 82–188.

    Google Scholar 

  • Brooksbank BWL, Martinez M, Atkinson DJ, Balazs R (1978) Biochemical development of the human brain. I. Some parameters of the cholinergic system. Dev Neurosci 1: 267–284.

    Google Scholar 

  • Campbell AK (1983) Intracellular calcium: its universal role as regulator. In: Gutfreund H, ed. Monographs in Molecular Biophysics and Biochemistry. Wiley, New York, pp. 1–556.

    Google Scholar 

  • Carlson BX, Elster L, Schousboe A (1998) Pharmacological and functional implications of developmentally-regulated changes in GABAA receptor subunit expression in the cerebellum. Eur J Pharmacol 352: 1–14.

    Google Scholar 

  • Carpenter MB, Huang Y, Pereira AB, Hersh LB (1990) Immunocytochemical features of the vestibular nuclei in the monkey and cat. J Hirnforschung 31: 585–599.

    Google Scholar 

  • Celio MR (1986) Paravalbumin in most gamma aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231: 995–997.

    Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci 35: 375–475.

    Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293: 300–302.

    Google Scholar 

  • Chan WY, Yew DT (1998) Apoptosis and Bcl-2 oncoprotein expression in the human fetal central nervous system. Anat Rec 252: 165–175.

    Google Scholar 

  • Chan-Palay V, Nilaver G, Palay SL, Beinfeld MC, Zimmerman EA, Wu JY, O'Donohue TL (1981) Chemical heterogeneity in cerebellar Purkinje cells: existence and coexistence of glutamic acid decarboxylase-like and motilin-like immunoreactivities. Proc Natl Acad Sci USA 78: 7787–7791.

    Google Scholar 

  • Chesselet MF, Affolter HU (1987) Preprotachykinin messenger RNA detected by in situ hydridization in striatal neurons of the human brain. Brain Res 410: 83–88.

    Google Scholar 

  • Commissiong JW (1983) Development of catecholaminergic nerves in the spinal cord of the rat. Brain Res 264: 197–208.

    Google Scholar 

  • Corliss CE (1976) The Nervous System. In: Patten's Human Embryology-Elements of Clinical Development, Chapter 13. McGraw-Hill, New York, pp. 199–235.

    Google Scholar 

  • Cotman CW, Monaghan DT (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 11: 61–80.

    Google Scholar 

  • Court JA, Perry EK, Johnson M, Piggott MA, Kerwin JA, Perry RH, Ince PG (1993) Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. Dev Brain Res 74: 73–82.

    Google Scholar 

  • Court JA, Perry EK, Spurden D, Griffiths M, Kerwin JM, Morris CM, Johnson M, Oakley AE, Birdsall NJM, Clementi F, Perry RH (1995) The role of the cholinergic system in the development of the human cerebellum. Dev Brain Res 90: 159–167.

    Google Scholar 

  • Coyle JT, Enna SL (1976) Neurochemical aspects of the ontogenesis of GABAergic neurons in the rat brain. Brain Res 111: 119–133.

    Google Scholar 

  • Cross A, Skan W, Slater P (1986) Binding sites for [3H] glutamate and [3H] aspartate in human cerebellum. J Neurochem 47: 1463–1468.

    Google Scholar 

  • De Lacalle S, Hersh LB, Saper CB (1993) Cholinergic innervation of the human cerebellum. J Comp Neurology 328: 364–376.

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989a) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503: 49–54.

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989b) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86: 2093–2097.

    Google Scholar 

  • Del Fiacco M, Perra MT, Quartu M, Rosa MD, Zucca G, Levanti MC (1988) Evidence for the presence of substance P-like immunoreactivity in the human cerebellum. Brain Res 446: 173–177.

    Google Scholar 

  • Del Olmo E, Díaz A, Guirao-Piñeyro M, Del Arco C, Pascual J, Pazos A (1994) Transient localization of 5–HT1A receptors in human cerebellum during development. Neurosci Lett 166: 149–152.

    Google Scholar 

  • Demeulemeester H, Arckens L, Vandesande F, Orban GA, Heizmann CW, Pochet R (1991) Calcium-binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Exp Brain Res 84: 538–544.

    Google Scholar 

  • Drejer J, Larsson OM, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellum in vivo. Neurochem Res 10: 49–62.

    Google Scholar 

  • Emerit MB, Riad M, Hamon M (1992) Trohpic effects of neurotransmitters during brain maturation. Biol Neonate 62: 193–201.

    Google Scholar 

  • Emson PC, Lundberg JM, Gilbert RFT (1983) Coexistence of neuropeptides and monoamines: possible implications fro receptors. In: Strange PG, ed. Cell Surface Receptors, Ellis Horwood, Chichester, pp. 110–125.

    Google Scholar 

  • Espada P, Toledano A, Barca MA (1982) Glutamate dehydrogenase in the postnatal developing cerebellum. A biochemical study. Trabajos del Insitituto Cajal 73: 95–107.

    Google Scholar 

  • Felten DL, Felten SY, Perry KW, Fuller RW, Nurnberger JI, Ghetti B (1986) Noradrenergic innervation of the cerebellar cortex in normal and in Purkinje cell degeneration mutant mice: Evidence for long term survival following loss of the two major cerebellar cortical neuronal populations. Neurosci 18: 783–793.

    Google Scholar 

  • Fiszer De Plazas S (1982) Ontogenesis of GABA receptor sites in chick embryo cerebellum. Brain Res 255: 263–275.

    Google Scholar 

  • Friede RL (1973) Dating the Development of Human Cerebellum. Acta neuropath (Berl) 23: 48–58.

    Google Scholar 

  • Fujii T, Sakai M, Nagatsu I (1994) Immunohistochemical demonstration of expression of tyrosine hydroxylase in cerebellar Purkinje cells of the human and mouse. Neurosci Lett 165: 161–163.

    Google Scholar 

  • Fuxe K (1965) The distribution of monoamine terminals in the central nervous system. Acta Physiol Scand (suppl) 65: 39–85.

    Google Scholar 

  • Gabbott PLA, Somogyi J, Stewart MG, Hamori J (1986) GABA-immunoreactive neurons in the rat cerebellum: a light and electron microscopic study. J Comp Neurol 251: 474–490.

    Google Scholar 

  • Gadson DR, Emery JL (1976) Some quantitative morphological aspects of post natal human cerebellar growth. J Neurol Sci 29: 137–148.

    Google Scholar 

  • Greif KF, Erlander MG, Tillakaratne NJ, Tobin AJ (1991) Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem Res 16: 235–242.

    Google Scholar 

  • Hamori J, Takacs J (1989) Two types ofGABA-containing axon terminals in cerebellar glomeruli of cat: an immunogold-EM study. Expl Brain Res 74: 471–479.

    Google Scholar 

  • Hanson GH, Meier E, Schousboe A (1984) GABA influences the ultrastructural composition of cerebellar granule cells during development in culture. Int J Dev Neurosci 2: 247–257.

    Google Scholar 

  • Hanson GH, Meier E, Abraham J, Schousboe A (1987) Trophic effects of GABA on cerebellar granule cells in culture. In: Redburn DA, Schousboe A, eds. Neurotrophic Activity of GABA during Development. Alan R. Liss, New York, pp. 109–138.

    Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14: 39–57.

    Google Scholar 

  • Härtig W, Brückner G, Brauer K, Seeger G, Bigl V (1996) Triple immunofluorescence labelling of parvalbumin, calbindin-D28k and calretinin in rat and monkey brain. J Neurosci Methods 67: 89–95.

    Google Scholar 

  • Hatten ME, Francios AM, Napolitano E, Roffler-Tarlov S (1984) Embryonic cerebellar neurons accumulate 3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neuron in vitro and in vivo. J Neurosci 4: 1343–1353.

    Google Scholar 

  • Hatziefthimiou A, Mitsacos A, Mitsaki E, Plaitakis A, Kouvelas ED (1991) Quantitative autoradiographic study of L-glutamate binding sites in normal and atrophic human cerebellum. J Neurosci Res 28: 367–375.

    Google Scholar 

  • Hayaran A, Wadhwa S, Bijlani V (1993) Expression of substance P in dentate nucleus of human cerebellum. Neurosci Lett 152: 99–102.

    Google Scholar 

  • Hayashi M (1987) Ontogeny of glutamic acid decarboxylase, tyrosine hydroxylase, choline acetyltransferase, somatostatin and substance P in monkey cerebellum. Brain Res 429: 181–186.

    Google Scholar 

  • Haydon PG, McCobb DP, Kater SB (1984) Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 226: 561.

    Google Scholar 

  • Heizmann CW, Hunziker W (1991) Intracellular calcium-binding proteins. More sites than insights. Trends Biochem Sci 16: 98–103.

    Google Scholar 

  • Hendry SHC, Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium-binding proteins. Brain Res 543: 45–55.

    Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium-binding protein immunoreactivities. Exp Brain Res 76: 467–472.

    Google Scholar 

  • Hökfelt T, Fuxe K (1969) Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res 9: 63–72.

    Google Scholar 

  • Hökfelt T, Ljungdahl A (1970) Cellular localization of labelled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study. Brain Res 22: 391–396.

    Google Scholar 

  • Hökfelt T, Millhorn D, Seroogy K, Tsuruo Y, Ceccatelli S, Lindh B, Meister B, Melander T, Schalling M, Bartfai T et al. (1987) Coexistence of peptides with classical neurotransimtters. Experientia 43: 768–780.

    Google Scholar 

  • Hussain MM, Zannis VI, Plaitakis A (1989) Characterization of glutamate dehydrogenase isoproteins purified from the cerebellum of normal subjects and patients with degenerative neurological disorders, and from human neoplastic cell lines. J Biol Chem 264: 20730–20735.

    Google Scholar 

  • Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neurosci 51: 719–728.

    Google Scholar 

  • Inagaki S, Sakanaka M, Shiosaka S, Senba E, Takagi H, Takatsuki K, Kawai Y, Matsuzaki T, Iida H, Hara Y, Tohyama M (1982) Experimental and immunohistochemical studies on the cerebellar substance P of the rat: localization, postnatal ontogeny and ways of entry to the cerebellum. Neurosci 7: 639–645.

    Google Scholar 

  • Jaeger CB, Joh TH (1983) Transient expression of tyrosine hydroxylase in some neurons of the developing inferior colliculus of the rat. Dev Brain Res 11: 128–132.

    Google Scholar 

  • Jansen KL, Dragunow M, Faull RL, Leslie RA (1991) Autoradiographic visualisation of [3H] DTG binding to sigma receptors, [3H] TCP binding sites, and L-[3H] glutamate binding to NMDA receptors in human cerebellum. Neurosci Lett 125: 143–146.

    Google Scholar 

  • Johnson M, Perry EK, Ince PG, Shaw PJ, Perry RH (1993) Autoradiographic comparison of the distribution of [3H]MK801 and [3H]CNQX in the human cerebellum during development and aging. Brain Res 615: 259–266.

    Google Scholar 

  • Johnston MV, Coyle JT (1981) Development of the central neurotransmitters system. Ciba Foundation Symp 86: 251–270.

    Google Scholar 

  • Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic neurons containing the calciumbinding protein parvalbumin in the rat hippocampus. Exp Brain Res 72: 347–362.

    Google Scholar 

  • Kimoto Y, Tohyama M, Satoh K, Sakumoto Y, Takahashi Y, Shimizu N (1981) Fine structure of rat cerebellar noradrenaline terminals as visualized by potassium permanganate in situ perfusion fixation method. Neurosci 6: 47–58.

    Google Scholar 

  • Konig N, Wilkie MB, Lauder JM (1988) Tyrosine hydroxylase and serotonin containing cells in embryonic rat rhombencephalon: a wholemount immunocytochemical study. J Neurosci Res 20: 212–233.

    Google Scholar 

  • Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39: 699–674.

    Google Scholar 

  • Kosaka T, Heizmann CW, Tateishi K, Hamaoka Y, Hama K (1987) An aspect of the organizational principle of the aminobutyric acid-ergic systems in the cerebral cortex. Brain Res 409: 403–408.

    Google Scholar 

  • Kow LM, Pfaff DW (1988) Neuromodulatory actions of peptides. Ann Rev Pharmacol Toxicol 28: 163–188.

    Google Scholar 

  • Krieger DT (1983) Brain peptides: what, where, and why? Science 222: 975–985.

    Google Scholar 

  • Kubota Y, Jones EG (1993) Co-localization of two calcium binding proteins in GABA cells of rat piriform cortex. Brain Res 600: 339–344.

    Google Scholar 

  • Kumoi K, Saito N, Takayushi K, Tanaka C (1988) Immunochemical localization of gamma aminobutyric acid and aspartate-containing neurons in the rat deep cerebellar nuclei. Brain Res 439: 302–310.

    Google Scholar 

  • Kuriyama K, Sisken B, Simonsen DG, Haber B, Roberts E (1968) The gamma aminobutyric acid system in the developing chick embryo cerebellum. Brain Res 11: 412–430.

    Google Scholar 

  • Kvamme E, Schousboe A, Hertz L, Torgner IA, Svenneby G (1985) Developmental change of endogenous glutamate and gammaglutamy1 transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem Res 10: 993–1008.

    Google Scholar 

  • Landis SC, Shoemaker WJ, Schlumpf M, Bloom FE (1975) Catecholamines in mutant mouse cerebellum: fluorescence microscopic and chemical studies. Brain Res 93: 253–266.

    Google Scholar 

  • Larroche LC (1981) The marginal layer in the neocortex of a 7–week old human embryo. Anat Embryol 162: 301–312.

    Google Scholar 

  • Larsen WJ (1993) Development of the brain and cranial nerves. In: Human Embryology, Chapter 13. Churchill Livingstone, Singopore, pp. 375–418.

    Google Scholar 

  • Lauder JM (1993) Neurotransmitters as growth regulatory singals: role of receptors and second messengers. Trends Neurosci 16: 233–240.

    Google Scholar 

  • Lauder JM, Bloom FE (1974) Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155: 469–482.

    Google Scholar 

  • Lauder JM, Krebs H (1976) Effects of p-chlorophenylalanine on time of neuronal origin during embryogenesis in the rat. Brain Res 107: 638–644.

    Google Scholar 

  • Lauder JM, Han VKM, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neurosci 19: 465–493.

    Google Scholar 

  • Li Y, Takada M, Shinonaga Y, Mizuno N (1993) Direct projections from the midbrain periaqueductal gray and the dorsal raphe nucleus to the trigeninal sensory complex of the rat. Neurosci 54: 431–443.

    Google Scholar 

  • Lipton SA, Kater SB (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12: 265–270.

    Google Scholar 

  • Liu CJ, Grandes P, Matute C, Cuenod M, Streit P (1989) Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochem 90: 427–445.

    Google Scholar 

  • Lu P, Imaki H, Xu W, Sturman JA (1993) Visualization of taurine, GABA and glutamate in developing feline cerebellum by immunohistochemistry. Int J Dev Neurosci 11: 493–505.

    Google Scholar 

  • Madl JE, Clements JR, Beitz AJ, Wenthold RJ, Larson AA (1988) Immunocytochemical localization of glutamate dehydrogenase in mitochondria of the cerebellum: an ultrastructural study using a monoclonal antobody. Brain Res 452: 396–402.

    Google Scholar 

  • Maiti A, Snider RS (1975) Cerebellar control of basal forebrain seizures: amygdala and hippocampus. Epilepsia 16: 521–533.

    Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropath 2: 1–7.

    Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152: 109–126.

    Google Scholar 

  • Marin-Padilla M, Marin-Padilla MT (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol 164: 161–206.

    Google Scholar 

  • Marks A, O'Hanlon D, Lei M, Percy ME, Becker LE (1996) Accumulation of S100 beta mRNA and protein in cerebellum during infancy in Down Syndrome and control subjects. Brain Res 36: 343–348.

    Google Scholar 

  • McGeer EG, Gibson S, Wada JA, McGeer PL (1967) Distribution of tyrosine hydroxylase activity in adult and developing brain. Canadian J Biochem 45: 1943–1952.

    Google Scholar 

  • Meinecke DL, Rakic P (1990) Developmental expression of GABA and subunits of the GABAA receptor complex in an inhibitory synaptic circuit in the rat cerebellum. Dev Brain Res 55: 73–86.

    Google Scholar 

  • Meinecke DL, Tallman J, Rakic P (1989) GABAA/benzodiazepine receptor-like immunoreactivity in rat and monkey cerebellum. Brain Res 493: 303–319.

    Google Scholar 

  • Miscolczy D (1931) Ñber die Endigungsweise der spinocerebellaren Bahnen. Zeitschrift Anatomie 96: 537–542.

    Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29: 365–402.

    Google Scholar 

  • Moore KL, Persaud TVN (1998) The Nervous System. In: The Developing Human-Clinically Oriented Embryology, 6th edn, Chapter 18, W.B. Saunders, Philadelphia, pp. 451–489.

    Google Scholar 

  • Müller F, O'Rahilly R (1988) The development of the human brain from a closed neural tube at stage 13. Anat Embryol 177: 203–224.

    Google Scholar 

  • Nelson TE, King JS, Bishop GA (1997) Distribution of tyrosine hydroxylase-immunoreactive afferents to the cerebellum differs between species. J Comp Neurol 379: 443–454.

    Google Scholar 

  • O'Rahilly R, Müller F (1994) The Embryonic Human Brain.Wiley-Liss, New York.

    Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate-and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229: 374–392.

    Google Scholar 

  • Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neurosci 46: 519–534.

    Google Scholar 

  • Parnavelas JA, Blue ME (1982) The role of the noradrenergic system in the formation of synapses in the visual cortex of the rat. Dev Brain Res 3: 140–144.

    Google Scholar 

  • Powers RE, O'Connor DT, Price DL (1989) Noradrenergic systems in human cerebellum. Brain Res 481: 194–199.

    Google Scholar 

  • Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154: 267–284.

    Google Scholar 

  • Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139: 473–500.

    Google Scholar 

  • Rao VL, Murthy CR (1992) Ammonia-induced alterations in the metabolism of glutamate and aspartate in neuronal perikarya and synaptosomes of rat cerebellum. Metabolic Brain Disease 7: 51–61.

    Google Scholar 

  • Rao VL, Murthy CR (1993) Characteristics of [3H] glutamate binding sites in rat cerebellum. Biochem Mole Biol Int 30: 861–866.

    Google Scholar 

  • Rhyner JA, Durussel I, Cox JA, Ilg EC, Schafer BW, Heizmann CW (1996) Human recombinant alpha-parvalbumin and nine mutants with individually inactivated Ca2+ and Mg2+-binding sites: biochemical and immunological properties. Biochem Biophys Acta 1313: 179–186.

    Google Scholar 

  • Rogers JH (1992) Immunohistochemical markers in rat cortex: colocalization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res 587: 147–157.

    Google Scholar 

  • Rogers JH, Résibois A (1992) Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neurosci 51: 843–865.

    Google Scholar 

  • Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21: 134–140.

    Google Scholar 

  • Schon F, Iversen LL (1972) Selective accumulation of (3H) GABA by stellate cells in rat cerebellar cortex in vivo. Brain Res 42: 503–507.

    Google Scholar 

  • Schultzberg M, Hokfelt T, Lundberg JM (1982) Coexistence of classical transmitters and peptides in the central and peripheral nervous systems. Br Med Bull 38: 309–313.

    Google Scholar 

  • Shashidharan P, Plaitakis A (1993) Cloning and characterization of a glutamate transporter cDNA from human cerebellum. Biochim Biophys Acta 1216: 161–164.

    Google Scholar 

  • Sheikh SN, Martin DL (1996) Heteromers of glutamate decarboxylase isoforms occur in rat cerebellum. J Neurochem 66: 2082–2090.

    Google Scholar 

  • Shuey DL, Sadler TW, Tamir H, Lauder JM (1993) Serotonin and morphogenesis. Anat Embryol 187: 75–85.

    Google Scholar 

  • Sigel E, Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18: 425–429.

    Google Scholar 

  • Sikick L, Hickok JM, Todd RD (1990) 5–HT1A receptors control neurite branching during development. Dev Brain Res 56: 169–271.

    Google Scholar 

  • Snider RS (1936) Alterations which occur in mossy terminals of the cerebellum following transection of the brachium pontis. J Comp Neurol 64: 417–435.

    Google Scholar 

  • Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP (1986) Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neurosci 19: 1045–1050.

    Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9: 2197–2209.

    Google Scholar 

  • Spoerri PE, Wolff JR (1981) Effect of GABA adminstration on murine neuroblastoma cells in culture I. Increased membrane dynamics and formation of specialized contacts. Cell Tissue Res 218: 567–579.

    Google Scholar 

  • Spruce BA, Curtis R, Wilkin GP, Glover DM (1990) A neuropeptide precursor in cerebellum: proenkephalin exists in subpopulations of both neurons and astrocytes. EMBO J 9: 1787–1795.

    Google Scholar 

  • Takada M, Sugimoto T, Hattori T (1993) Tyrosine hydroxylase immunoreactivity in cerebellar Purkinje cells of the rat. Neurosci Lett 150: 61–64.

    Google Scholar 

  • Tiu SC, ChanWY, Heizmann CW, Schäfer BW, Shu SY, Yew DT (2000) Differential expression of S100B and S100A6 in the human fetal and aged cerebral cortex. Dev Brain Res 119: 159–168.

    Google Scholar 

  • Tsiotos P, Plaitakis A, Mitsacos A, Voukelatou G, Michalodimitrakis M, Kouvelas ED (1989) L-glutamate binding sites of normal and atrophic human cerebellum. Brain Res 481: 87–96.

    Google Scholar 

  • van Brederode JFM, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neurosci 44: 157–171.

    Google Scholar 

  • van Brederode JFM, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298: 1–22.

    Google Scholar 

  • Vergé D, Matthiessen L, Daval G, Bailly Y, Kia HK, Hamon M (1991) Localization of 5–HT1A serotonin receptors in the cerebellum of young rats. Neurochem Int 19: 425–431.

    Google Scholar 

  • Verney C, Gaspar P, Febvret A, Berger B (1988) Transient tyrosine hydroxylase-like immunoreactive neurons contain somatostatin and substance P in the developing amygdala and bed nucleus of the stria terminalis of the rat. Dev Brain Res 42: 45–58.

    Google Scholar 

  • Voukelatou G, Aletras AJ, Tsourinakis T, Kouvelas ED (1992) Glutamate-like immunoreactivity in chick cerebellum and optic tectum. Neurochem Res 17: 1267–1273.

    Google Scholar 

  • Walker JJ, King JS (1989) Ontogenesis of enkephalinergic afferent systems in the opossum cerebellum. Dev Brain Res 48: 35–58.

    Google Scholar 

  • Walker JJ, Bishop GA, Ho RH, King JS (1988) Brainstem origin of serotonin-and enkephalin-immunoreactive afferents to the opossum's cerebellum. J Comp Neurol 276: 481–497.

    Google Scholar 

  • Wassef M, Simons J, Tappaz ML, Sotelo C (1986) Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res 395: 125–135.

    Google Scholar 

  • Wenthold RJ, Altschuler RA, Skaggs KK, Reeks KA (1987) Immunocytochemical characterization of glutamate dehydrogenase in the cerebellum of the rat. J Neuroschem 48: 636–643.

    Google Scholar 

  • Westergaard N, Fosmark H, Schousboe A (1991) Metabolism and release of gluatmate in cerebellar granule cells cocultured with astrocytes from cerebellum or cerebral cortex. J Neurochem 56: 59–66.

    Google Scholar 

  • Wolf G, Schunzel G (1987) Glutamate dehydrogenase in aminoacidergic structures of the postnatally developing rat cerebellum. Neurosci Lett 78: 7–11.

    Google Scholar 

  • Wolff JR, Joo F, Kasa P (1987) Synaptic, metabolic and morphogenetic effects of GABA in the superior cervical ganglion of rats. In: Redburn DA, Schousboe A, eds. Neurotrophic Activity of GABA during Development. Alan R. Liss, New York, pp. 221–252.

    Google Scholar 

  • Wu K, Carlin R, Siekevitz P (1986) Binding of L-[3H] glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain. J Neurochem 46: 831–841.

    Google Scholar 

  • Yamamoto T, Ishikawa M, Tanaka C (1977) Catecholaminergic terminals in the developing and adult rat cerebellum. Brain Res 132: 355–361.

    Google Scholar 

  • Yamashita N, Kosaka K, Ilg EC, Schäfer BW, Heizmann CW, Kosaka T (1997) Selective association of S100A6 (calcyclin) immunoreactive astrocytes with the tangential migration of subventricular zone cells in the rat. Brain Res 778: 388–392.

    Google Scholar 

  • Yeh HH, Woodward DJ (1983) Noradrenergic action in the developing rat cerebellum: interaction between norepinephrine and synaptically-evoked responses of immature Purkinje cells. Brain Res 313: 207–218.

    Google Scholar 

  • Yew DT, Chan WY (1999) Early appearance of acetylcholinergic, serotoninergic and peptidergic neurons and fibers in the developing human central nervous system. Microscopy Res Tech 45: 389–400.

    Google Scholar 

  • Yew DT, Li WWY, Lam TK (1996) Enkephalin positive sites in the developing human cerebellum. Int J Neurosci 86: 15–21.

    Google Scholar 

  • Yew DT, Luo CB, Heizmann CW, Chan WY (1997) Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum. Dev Brain Res 103: 37–45.

    Google Scholar 

  • Yew DT, Luo CB, Shen WZ, Chow PH, Zheng DR, Yu MC (1995) Tyrosine hydroxylase-and dopamine-β-hydroxylase-positive neurons and fibres in the developing human cerebellum-an immunohistochemical study. Neurosci 65: 453–461.

    Google Scholar 

  • Yew DT, Chan WY, Luo CB, Zheng DR, Yu MC (1999) Neurotransmitters and neuropeptides in the developing human central nervous system. A review. Biol Signals Recept 8:149–159.

    Google Scholar 

  • Yu MC, Cho E, Luo CB, Li WWY, Shen WZ, Yew DT (1996) Immunohistochemical studies of GABA and parvalbumin in the developing human cerebellum. Neurosci 70: 267–276.

    Google Scholar 

  • Zagon IS, Gibo DM, McLaughlin PJ (1990) Adult and developing human cerebella exhibit different profiles of opioid binding sites. Brain Res 523: 62–68.

    Google Scholar 

  • Zagon IS, McLaughlin PJ (1990) Ultrastructural localization of enkephalin-like immunoreactivity in developing rat cerebellum. Neurosci 34: 479–489.

    Google Scholar 

  • Zagon IS, Rhodes RE, McLaughlin PJ (1985) Distribution of enkephalin immunoreactivity in germinative cells of developing rat cerebellum. Science 227: 1049–1051.

    Google Scholar 

  • Zecevik N, Rakic P (1976) Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J Comp Neurol 167: 27–47.

    Google Scholar 

  • Zheng JQ, Felder M, Connor JA, Poo M (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368: 140–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, W., Chan, W., Lee, K. et al. Neurotransmitters, Neuropeptides and Calcium Binding Proteins in Developing Human Cerebellum: A Review. Histochem J 32, 521–534 (2000). https://doi.org/10.1023/A:1004197210189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004197210189

Keywords

Navigation