Skip to main content
Log in

Are kelp holdfasts islands on the ocean floor? – indication for temporarily closed aggregations of peracarid crustaceans

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During the colonisation process of islands, newly immigrating species often arrive as single individuals. Islands that have received single colonisers may subsequently harbour large populations of a species, while other islands may completely lack this species. Exchange between islands is limited, thereby strongly affecting evolutionary processes. While this concept is widely used in the context of oceanic islands or habitat patches on the mainland, it is rarely used to explain and examine the distribution patterns of marine invertebrates. Benthic marine organisms inhabiting patches with island-like features may also be restricted in their movements between patches. Once established in a patch, it may be more favourable to remain there rather than moving to another patch. Juveniles of species with direct development may recruit to the island patch of their parents. Herein, we examined the peracarid fauna in patches that have island-like features, i.e. kelp holdfasts. The number of peracarid species within an individual holdfast increased with its size. Similarly, the number of individuals per holdfast increased with holdfast size. However, several peracarid species showed a strongly aggregated distribution pattern, being highly abundant in some holdfasts and almost completely absent in others. Our results suggest that these aggregations of conspecifics may be a consequence of the peracarid reproductive biology: fully developed juveniles emerge from the female's marsupium and recruit to the immediate vicinity of their mother, showing little or no tendency to emigrate towards other patches. At present, while it is not known how long peracarid aggregations within kelp holdfasts persist, our data suggest that some juveniles may remain with the natal holdfast and possibly reproduce therein. It is concluded that, during certain time periods, reproduction rates of peracarids in a holdfast may exceed their migration rates between holdfasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buschmann, A. H., 1990. Intertidal macroalgae as refuge and food for Amphipoda in Central Chile. Aquat. Bot. 36: 237–245.

    Google Scholar 

  • Cancino, J. & B. Santelices, 1984. Importancia ecologica de los discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev. Chil. Hist. Nat. 57: 23–33.

    Google Scholar 

  • Conlan, K. E. & E. L. Bousfield, 1982. The amphipod superfamily Corophioidea in the Northeastern Pacific region. Family Ampithoidae: Systematics and Distributional Ecology. Publs. biol. Oceanogr. Nation. Mus. Canada 10: 41–75.

    Google Scholar 

  • Conlan, K. E. & J. R. Chess, 1992. Phylogeny and ecology of a kelp-boring amphipod, Peramphithoe stypotrupetes, new species (Corophioidea: Amphithoidae). J. Crust. Biol. 12: 410–422.

    Google Scholar 

  • Dayton, P. K., 1985. Ecology of kelp communities. Annu. Rev. Ecol. Syst. 16: 215–245.

    Google Scholar 

  • De Wolf, H., T. Backelhau & R. Verhagen, 1998. Spatio-temporal genetic structure and gene flow between two distinct shell morphs of the planktonic developing periwinkle Littorina striata (Mollusca: Prosobranchia). Mar. Ecol. Prog. Ser. 163: 155–163.

    Google Scholar 

  • Duffy, J. E., 1996. Eusociality in a coral-reef shrimp. Nature 381: 512–514.

    Google Scholar 

  • Duffy, J. E. & M. E. Hay, 1994. Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75: 1304–1319.

    Google Scholar 

  • Duffy, J. E. & K. S. Macdonald, 1999. Colony structure of the social snapping shrimp Synalpheus filidigitus in Belize. J. Crust. Biol. 19: 283–292.

    Google Scholar 

  • Edgar, G. J., 1992. Patterns of colonization of mobile epifauna in a Western Australian seagrass bed. J. exp. mar. Biol. Ecol. 157: 225–246.

    Google Scholar 

  • Flach, E. C., 1992. The influence of four macrozoobenthic species on the abundance of the amphipod Corophium volutator on tidal flats of the Wadden Sea. Neth. J. Sea Res. 29: 379–394.

    Google Scholar 

  • Flach, E. C. & W. De Bruin, 1994. Does the activity of cockles, Cerastoderma edule (L.) and lugworms, Arenicola marina L., make Corophium volutator Pallas more vulnerable to epibenthic predators: a case of interaction modification? J. exp. mar. Biol. Ecol. 182: 265–285.

    Google Scholar 

  • Gunnill, F. C., 1982. Macroalgae as habitat patch islands for Scutellidium lamellipes (Copepoda: Harpacticoida) and Amphithoe tea (Amphipoda: Gammaridae). Mar. Biol. 69: 103–116.

    Google Scholar 

  • Gunnill, F. C., 1983. Seasonal variation in the invertebrate faunas of Pelvetia fastigiata (Fucaceae): effects of plant size and distribution. Mar. Biol. 73: 115–130.

    Google Scholar 

  • Johannesson, K, B. Johannesson & E. Rolán-Alvarez, 1993. Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47: 1770–1787.

    Google Scholar 

  • Jones, L. G., 1971. Studies on selected small herbivorous invertebrates inhabiting Macrocystis canopies and holdfasts in southern California kelp beds. Beiheft Nova Hedwigia 32: 343–367.

    Google Scholar 

  • Knight, A. J., R. N. Hughes & R. D. Ward, 1987. A striking example of the founder effect in the mollusc Littorina saxatilis. Biol. J. linn. Soc. 32: 417–426.

    Google Scholar 

  • Menzies, R. J., 1957. The marine borer family Limnoridae (Crustacea, Isopoda). Part I: Northern and Central America: systematics, distribution and ecology. Bull. Mar. Sci. Gulf. and Carib. 7: 101–200.

    Google Scholar 

  • Moore, P. G., 1973. The larger Crustacea associated with holdfasts of kelp (Laminaria hyperborea) in North-East Britain. Cah. biol. Mar. 16: 493–518.

    Google Scholar 

  • Moore, P. G., 1986. Levels of heterogeneity and the amphipod fauna of kelp holdfasts. In Moore, P. G. & R. Seed (eds), The Ecology of Rocky Coasts. Columbia University Press, New York: 274–289.

    Google Scholar 

  • Muñoz, A. A. & F. P. Ojeda, 1997. Feeding guild structure of a rocky intertidal fish assemblage in central Chile. Env. Biol. Fish. 49: 471–479.

    Google Scholar 

  • Muñoz, A. A. & F. P. Ojeda, 1998. Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114: 563–573.

    Google Scholar 

  • Poulin, E. & J.-P. Féral, 1994. The fiction and facts of Antarctic brood protecting: population genetics and evolution of schizasterid echinoids. In David, B. A. Guille, J.-P. Féral & M. Roux (eds), Echinoderms Through Time, Proc. 8th Intn. Echinoderm Conf., Dijon, France. Balkema, Rotterdam: 837–843. Poulin, E. & J.-P. Féral, 1995. Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Mar. Ecol. Prog. Ser. 118: 179–186. Poulin, E. & J.-P. Féral, 1998. Genetic structure of the brooding sea urchin Abatus cordatus, an endemic of the Subantarctic Kerguelen Island, and the origin of the diversity of Antarctic echinoids. In Mooi, R. & M. Telford (eds), Echinoderms, Proc. 9th Intn. Echinoderm Conf., San Francisco, U.S.A. Balkema, Rotterdam: 793–795. Reusch, T. B. H., W. T. Stam & J. L. Olsen, 1999. Size and estimated age of genets in eelgrass, Zostera marina, assessed with microsatellite markers. Mar. Biol. 133: 519–525. Sainte-Marie, B., 1991. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223: 189–227. Skalamera, J.-P., F. Renaud, M. Raymond & T. de Meeus, 1999. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178: 251–258. Smith, S. D. A. & R. D. Simpson,1992. Monitoring the shallow sublittoral using the fauna of kelp (Ecklonia radiata) holdfasts. Mar. Poll. Bull. 24: 46–52. Stanhope, M. J., 1993. Molecular phylogeographic evidence for multiple shifts in habitat preference in the diversification of an amphipod species. Molec. Ecol. 2: 99–112. Taylor, R. B., 1998. Short-term dynamics of a seaweed epifaunal assemblage. J. exp. mar. Biol. Ecol. 227: 67–82. Tegner, M. J, P. K. Dayton, P. B. Edwards & K. L. Riser, 1995. Sea urchin cavitation of giant kelp (Macrocystis pyrifera C. Agardh) holdfasts and its effects on kelp mortality across a large California forest. J. exp. mar. Biol. Ecol. 191: 83–99. Thiel, M., 1999. Parental care behaviour in crustaceans-a comparative overview. Crustacean Issues 12: 211–226. Thiel, M., S. Sampson & L. Watling, 1997. Extended parental care in two endobenthic amphipods. J. nat. Hist. 31: 713–725. Vader, W., 1968. Notes on norwegian marine amphipoda. 4. Bifurcation of the gnathopod dactylus in a specimen of Parajassa pelagica (Ischyroceridae). Sarsia 33: 109–112. Vásquez, J. A. & B. Santelices, 1984. Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev. Chil. Hist. nat. 57: 111–122. Westinga, E. & P. C. Hoetjes, 1981. The intrasponge fauna of Spheciospongia vesparia (Porifera, Demospongiae) at Curacao and Bonaire. Mar. Biol. 62: 139–150. Wilson, A. B., J. S. Boates & M. Snyder, 1997. Genetic isolation of populations of the gammaridean amphipod, Corophium volutator, in the Bay of Fundy, Canada. Mol. Ecol. 6: 917–923.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, M., Vásquez, J.A. Are kelp holdfasts islands on the ocean floor? – indication for temporarily closed aggregations of peracarid crustaceans. Hydrobiologia 440, 45–54 (2000). https://doi.org/10.1023/A:1004188826443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004188826443

Navigation