Skip to main content
Log in

Influence of Nonplanar Distortions of the Tetrapyrrole Macroring on the Electronic States of the Tetraphenylporphin Dication

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Quantum-chemical calculations of the electronic structure of the tetraphenylporphin dication have been made by the CNDO/S method for various values of the parameter of saddle-like distortions of the porphyrin macroring of angle ϕ and the dihedral angle Θ between the macroring planes and the phenyl rings. It is shown that the boundary highest occupied molecular orbital (HOMO) of symmetry a 2u is the most sensitive to variations in ϕ and Θ and its order can be changed relative to another HOMO of symmetry a 1u . The behavior of the lower excited electronic singlet and triplet states depending on ϕ and Θ has been analyzed in detail. In particular, the addition of configurations with charge transfer to the Q, B, and N states as well as to the T 1 and T 2 states has been determined quantitatively. An interpretation of the experimental spectra of porphyrin dications on the basis of the calculation results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. E. Tronrud, M. F. Schmid, and B. W. Matthews, J. Mol. Biology, 188, 443–454 (1986).

    Google Scholar 

  2. J. Deisenhofer and H. Michel, Angew. Chem., Int. Ed. Engl., 28, 829–847 (1989).

    Google Scholar 

  3. R. G. Alden, M. R. Ondrias, and J. A. Shelnutt, J. Am. Chem. Soc., 112, 691–697 (1990).

    Google Scholar 

  4. K. M. Barkigia, L. Chantranupong, K. M. Smith, and J. Fajer, J. Am. Chem. Soc., 110, 7566–7567 (1988).

    Google Scholar 

  5. S. Tsuchiya, Chem. Phys. Lett., 169, 608–610 (1990).

    Google Scholar 

  6. J. Takeda, T. Ohya, and M. Sato, Chem. Phys. Lett., 183, 384–386 (1991).

    Google Scholar 

  7. K. M. Barkigia, M. W. Renner, L. R. Furenlid, C. J. Medforth, K. M. Smith, and J. Fajer, J. Am. Chem. Soc., 115, 3627–3635 (1993).

    Google Scholar 

  8. S. Gentemann, C. J. Medforth, T. P. Forsyth, D. J. Nurco, K. M. Smith, J. Fajer, and D. Holten, J. Am. Chem. Soc., 116, 7363–7368 (1994).

    Google Scholar 

  9. M. Ravikanth and T. K. Chandrashekar, J. Photochem. Photobiol. A: Chem., 74, 181–187 (1993).

    Google Scholar 

  10. N. C. Maiti and M. Ravikanth, J. Chem. Soc., Faraday Trans., 92, 1095–1100 (1996).

    Google Scholar 

  11. S. Gentemann, C. J. Medforth, T. Ema, N. Y. Nelson, K. M. Smith, J. Fajer, and D. Holten, Chem. Phys. Lett., 245, 441–447 (1995).

    Google Scholar 

  12. P. Charlesworth, T. G. Truscott, D. Kessel, C. J. Medforth, and K. M. Smith, J. Chem. Soc. Faraday Trans., 90, 1073–1076 (1994).

    Google Scholar 

  13. S. Gentemann, S. H. Leung, K. M. Smith, J. Fajer, and D. Holten, J. Phys. Chem., 99, 4330–4334 (1995).

    Google Scholar 

  14. A. Regev, T. Galili, C. J. Medforth, K. M. Smith, K. M. Barkigia, J. Fajer, and H. Levanon, J. Phys. Chem., 98, 2520–2526 (1994).

    Google Scholar 

  15. V. V. Sapunov and G. D. Egorova, Khim. Fiz., 13, 60–67 (1994).

    Google Scholar 

  16. S. Gentemann, N. Y. Nelson, L. Jaquinod, D. J. Nurco, S. H. Leung, C. J. Medforth, K. M. Smith, J. Fajer, and D. Holten, J. Phys. Chem. B, 101, 1247–1254 (1997).

    Google Scholar 

  17. V. I. Gael', V. A. Kuz'mitskii, and K. N. Solov'ev, Zh. Prikl. Spektrosk., 63, 932–942 (1996).

    Google Scholar 

  18. V. N. Knyukshto, K. N. Solovyov (Solov'ev), and G. D. Egorova, Biospectroscopy, 4, 121–133 (1998).

    Google Scholar 

  19. V. N. Knyukshto, K. N. Solov'ev, A. F. Mironov, G. D. Egorova, and A. V. Efimov, Opt. Spektrosk., 85, 592–600 (1998).

    Google Scholar 

  20. A. Stone and E. V. Fleischer, J. Am. Chem. Soc., 90, 2735–2748 (1968).

    Google Scholar 

  21. B. Cheng, O. Q. Munro, H. M. Marques, and W. R. Scheidt, J. Am. Chem. Soc., 119, 10732–10742 (1997).

    Google Scholar 

  22. V. I. Gael', V. A. Kuz'mitskii, and K. N. Solov'ev, Zh. Prikl. Spektrosk., 66, 559–562 (1999).

    Google Scholar 

  23. B. M. L. Chen and A. Tulinsky, J. Am. Chem. Soc., 94, 4144–4151 (1972).

    Google Scholar 

  24. K. M. Barkigia, M. D. Berber, J. Fajer, C. J. Medforth, M. W. Renner, and K. M. Smith, J. Am. Chem. Soc., 112, 8851–8857 (1990).

    Google Scholar 

  25. V. A. Kuz'mitskii, Investigation of Excited Electronic States of Metalloporphyrin Dimers by the Method of Self-Congruent Field of Molecular Orbitals and Linear Combination of Atomic Orbitals, Preprint No. 188 of the Institute of Physics, Academy of Sciences of Belarus [in Russian], Minsk (1988).

  26. A. V. Luzanov, Usp. Khim., 49, 2086–2117 (1980).

    Google Scholar 

  27. A. Stern and H. E. Wenderlein, Z. Phys. Chem., A175, 405–437 (1936).

    Google Scholar 

  28. N. E. Gruhn, D. L. Lichtenberger, H. Ogura, and F. A. Walker, Inorg. Chem., 38, 4023–4027 (1999).

    Google Scholar 

  29. J. D. Petke, G. M. Maggiora, L. L. Shipman, and R. E. Christoffersen, J. Mol. Spectrosc., 71, 64–84 (1978).

    Google Scholar 

  30. V. S. Chirvonyi, E. I. Sagun, and B. M. Dzhagarov, Zh. Prikl. Spektrosk., 27, 167–170 (1977).

    Google Scholar 

  31. V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polonica, 30, 771–790 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gael', V.I., Kuz'mitskii, V.A. & Solov'ev, K.N. Influence of Nonplanar Distortions of the Tetrapyrrole Macroring on the Electronic States of the Tetraphenylporphin Dication. Journal of Applied Spectroscopy 67, 956–965 (2000). https://doi.org/10.1023/A:1004112102893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004112102893

Navigation