Skip to main content
Log in

Analysis of the Decay Kinetics of Fluorescence of Complex Molecular Systems Using the Monte Carlo Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We propose a method of determining the parameters of the kinetic curves of fluorescence decay for complex molecular systems which is based on simulation modeling (the Monte Carlo method). The simulation model serves as a powerful alternative approach to analytical description of experimental data. The problem of approximation of experimental data reduces to the evaluation of the unknown parameters of the simulation model using optimization algorithms. A comparative analysis of two optimization methods — the Nelder–Mead and Marquardt ones — is performed, taking as an example the models of the decay kinetics of fluorescence with allowance for migration and transfer of the energy of electronic excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

    Google Scholar 

  2. T. Förster, Ann. Phys., 2, 55–75 (1948).

    Google Scholar 

  3. D. L. Dexter, J. Chem. Phys., 21, 836–850 (1953).

    Google Scholar 

  4. M. Kaschke and K. Vogler, Laser Chem., 8, 19–38 (1988).

    Google Scholar 

  5. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter, North-Holland, New York (1982).

    Google Scholar 

  6. J. N. Demas, Excited State Lifetime Measurement, Academic Press, New York (1984).

    Google Scholar 

  7. D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London (1984).

    Google Scholar 

  8. D. V. O'Connor, W. R. Ware, and J. C. Andre, J. Phys. Chem., 83, 1333–1343 (1979).

    Google Scholar 

  9. V. V. Apanasovich and E. G. Novikov, J. Appl. Spectrosc., 56, 538–550 (1992).

    Google Scholar 

  10. H. Kerp, H. Donker, R. B. M. Koehorst, T. J. Schaafsma, and E. E. van Fassen, Chem. Phys. Lett., 298, 302–308 (1998).

    Google Scholar 

  11. T. J. Schaafsma, R. B. M. Koehorst, H. Donker, W. van Schaik, and A. van Hoek, in: Proc. 11th Workshop on Quantum Solar Energy Conversion (QUANTSOL'99), March 14- 19, 1999, Wildhaus, Switzerland (1999), pp. 34–35.

    Google Scholar 

  12. R. Rubinstein and A. Shapiro, Modern Simulation and Modeling, Wiley, New York (1998).

    Google Scholar 

  13. K. Binder and D. V. Heerman, Monte Carlo Simulation in Statistical Physics, Springer- Verlag, Berlin (1992).

    Google Scholar 

  14. J. Knoester and J. E. van Himbergen, J. Chem. Phys., 86, 3577–3582 (1987).

    Google Scholar 

  15. L. B. A. Johanson, S. Engström, and M. Lindberg, J. Chem. Phys., 96, 3844–3856 (1992).

    Google Scholar 

  16. S. C. Harvey and H. C. Cheung, Proc. Natl. Acad. Sci. USA, 69, 3670–3672 (1972).

    Google Scholar 

  17. M. N. Berberan-Santos and B. Valeur, J. Chem. Phys., 95, 8049–8055 (1991).

    Google Scholar 

  18. L. Andrews and A. Demidov, Resonance Energy Transfer, Wiley, New York (1999).

    Google Scholar 

  19. R. F. Khairutdinov, P. P. Levin, and S. M. B. Costa, Langmuir, 12, 715–718 (1996).

    Google Scholar 

  20. X. Daura, R. Suter, and W. F. van Gunsteren, J. Chem. Phys., 110, 3049–3055 (1999).

    Google Scholar 

  21. W. H. Jo and S. S. Jang, J. Chem. Phys., 111, 1712–1720 (1999).

    Google Scholar 

  22. D. M. Hussey, S. Matzinger, and M. D. Fayer, J. Chem. Phys., 109, 8708–8718 (1998).

    Google Scholar 

  23. S. Engström, M. Lindberg, and L. B. A. Johanson, J. Chem. Phys., 89, 204–213 (1988).

    Google Scholar 

  24. D. M. Himmelblau, Process Analysis by Statistical Methods, Wiley, New York (1970).

    Google Scholar 

  25. R. Fletcher, Practical Methods of Optimization, Wiley, New York (1987).

    Google Scholar 

  26. P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Practical Optimization, Academic Press, New York (1989).

    Google Scholar 

  27. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York (1969).

    Google Scholar 

  28. E. S. Ventsel' and L. A. Ovcharov, Probability Theory and Its Engineering Applications [in Russian], Moscow (1988).

  29. G. Kramer, Mathematical Methods of Statistics [in Russian], Moscow (1975).

  30. F. N. Chowdhury, Z. S. Kolber, and M. D. Barkley, Rev. Sci. Instrum., 62, 47–52 (1991).

    Google Scholar 

  31. V. V. Apanasovich, E. G. Novikov, and N. N. Yatskov, Proc. SPIE, 2980, 495–502 (1997).

    Google Scholar 

  32. V. V. Apanasovich, E. G. Novikov, and N. N. Yatskov, in: Proc. 15th IMAC's World Congress, 5 (1997), pp. 719–723.

    Google Scholar 

  33. J. A. Nelder and R. Mead, Comput. J., 8, 308–313 (1965).

    Google Scholar 

  34. H. T. Lau, A Numerical Library in C for Scientists and Engineers, CRC Press (1995).

  35. Matlab. The Language of Technical Computing. Version 5.1.0.421, The MathWorks Inc. (1997).

  36. K. P. Chiggino and T. A. Smit, Prog. Reaction Kinetics, 18, 375–476 (1993).

    Google Scholar 

  37. S. Ohmori, S. Ito, and M. Yamamoto, Ber. Bunsenges. Phys. Chem., 93, 815–824 (1989).

    Google Scholar 

  38. O. J. Rolinski, D. J. S. Birch, L. J. McCartney, and J. C. Pickup, Chem. Phys. Lett., 309, 395–401 (1999).

    Google Scholar 

  39. A. B. Rubin, Biophysics [in Russian], Vol. 1, Moscow (1987).

  40. V. V. Apanasovich, E. G. Novikov, N. N. Yatskov, R. B. M. Koehorst, T. J. Schaafsma, and A. van Hoek, Zh. Prikl. Spektrosk., 66, 549–552 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apanasovich, V.V., Novikov, E.G. & Yatskov, N.N. Analysis of the Decay Kinetics of Fluorescence of Complex Molecular Systems Using the Monte Carlo Method. Journal of Applied Spectroscopy 67, 842–851 (2000). https://doi.org/10.1023/A:1004111716211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004111716211

Navigation