Skip to main content
Log in

Phylogenetic signals from point mutations and polymorphic Alu

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Allelic frequency data derived from five polymorphic Alu insertion loci and five point mutation polymorphic loci were compared to determine their ability to infer phylogenetic relationships among human populations. While point mutation polymorphisms inferred a monophyletic Caucasian clade that is corroborated by other studies, these data failed to support the generally accepted monophyly of Orientals with native Americans. In addition, there is less statistical bootstrap support for the maximum-likelihood tree derived from the point mutation polymorphisms as compared to those generated from either the Alu insertion data or the combined Alu insertion+point mutation data. The Alu data and the combined Alu insertion+point mutation data inferred a monophyletic relationship among the Oriental and native American populations. The Alu insertion data and the combined Alu insertion+point mutation data also displayed two separate, well defined, tight clusters of the Caucasian and the Oriental+native American populations which was not inferred from the point mutation data. These findings indicate greater phylogenetic information contained in Alu insertion frequencies than in allelic frequencies derived from point-mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armour, J.A.L. & A.J. Jeffreys, 1992. Biology and applications of human minisatellite loci. Curr. Opin. Genet. Dev. 2: 850–856.

    Article  PubMed  CAS  Google Scholar 

  • Batzer, M.A., V.A. Gudi, J.C. Mena, D.W. Foltz, R.J. Herrera & P.L. Deininger, 1991. Amplification dynamics of human-specific (HS) Alu family members. Nucleic Acids Res. 19: 3619–3623.

    PubMed  CAS  Google Scholar 

  • Batzer, M.A. & P.L. Deininger, 1991. A human-specific subfamily of Alu sequences. Genomics 9: 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Batzer, M.A., M. Stoneking, M. Alegria-Hartrnan, H. Bazan, D.H. Kass, T.H. Shaikh, G.E. Novick, P.A. Loannou, W.D. Scheer, R.J. Herrera & P.L. Deininger, 1994. African origin of human specific polymorphic Alu insertions. Proc. Natl. Acad. Sci. USA 91: 12288–12292.

    Article  PubMed  CAS  Google Scholar 

  • Batzer, M.A., S.S. Arcot, J.W. Phinney, M. Alegria-Hartman, D.H. Kass, S.M. Milligan, C. Kimpton, P. Gill, M. Hochmeister, P.A. Ioannou, R.J. Herrera, D.A. Boudrea, W.D. Scheer, B.J. Keats, P.L. Deininger & M. Stoneking, 1995. Dispersion and insertion polymorphism in two small subfamilies of recently amplified Alu repeats. J. Mol. Evol. 247: 418–427.

    CAS  Google Scholar 

  • Brown, R.J., D.J. Rowold, M.A. Tahir, C. Barna, G. Duncan & R.J. Herrera, 2000. Distribution of the HLA-DQA1 and polymarker alleles in the basque population of Spain. Forensic Sci. Int. in Press.

  • Cavalli-Sforza, L.L. & A.W.F. Edwards, 1967. Phylogenetic analysis: Models and estimation procedures. Evolution. 32: 550–570.

    Article  Google Scholar 

  • Cavalli-Sforza, L., P. Menozzi & A. Piazza, 1994. The history and geography of human genes. Princeton University Press, Princeton.

    Google Scholar 

  • Daniels, G.R. & P.L. Deininger, 1985. Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Res. 13: 8939–8954.

    PubMed  CAS  Google Scholar 

  • Farris, J.S., 1981. Distance data in phylogenetic analysis. pp. 3–22 in Advances in Cladistics, edited by V.A. Funk and D.R. Brooks. The New York Botanical Garden, Bronx.

    Google Scholar 

  • Felsenstein, J., 1981. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 35: 1229–1242.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Phylogenies from gene frequencies: A statistical problem. Syst. Zool. 34: 300–311.

    Article  Google Scholar 

  • Felsenstein, J., 1995. PHYLIP (Phylogeny Inference Package) version 3.573c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Fitch, W.M. & E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.

    PubMed  CAS  Google Scholar 

  • Greenberg, J.H., C.G. II Turner & S.L. Zegura, 1986. The settlement of the Americas: A comparison of the linguistic, dental, and genetic evidence. Curr. Anthropol. 27(5): 477–497.

    Article  Google Scholar 

  • Hamdi, H., H. Nishio, R. Zielinski & A. Dugiczyk, 1989. Origin and phylogenetic distribution of Alu DNA repeats: Irreversible Events in the Evolution of Primates. J. Mol. Biol. 289: 861–871.

    Article  Google Scholar 

  • Hammer, M.F., A.B. Spurdle, T. Karafet, M.R. Bonner, E.T. Wood, A. Novelletto, P. Malaspina, R.J. Mitchell, J.S. Horai, T. Jenkins & S.L. Zegura., 1997. The geographic distribution of human Y chromosome variation. Genetics. 145: 787–805.

    PubMed  CAS  Google Scholar 

  • Hennig, W., 1966. Phylogenetic Systematics. Univ. of Illinois Press, Urbana.

    Google Scholar 

  • J.M. Hayes, B. Budowle & M. Freund, 1995. Arab population data on the PCR-based loci: HLA-DQA1, LDLR, BYPA, HBGG, D1S80. J. Forensic Sci. 40(5): 888–892.

    PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., N.J. Royle, V. Wilson & Z. Wong, 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, W.P., 1997. Gene trees in species trees. Sys. Biol. 46: 523–536.

    Google Scholar 

  • Mickevich, M.F. & C. Mitter, 1981. Treating polymorphic characters in systematics: A phylogenetic treatment of electrophoretic data, pp. 45–60 in Advances in Cladistics, edited by N.I. Platnick and V.A. Funk, Vol. 2. Columbia Univ. Press, New York.

    Google Scholar 

  • Moritz, C. & D.M. Hillis, 1996. Molecular systematics: context and controversies, pp. 1–13 in Molecular Systematics, edited by D.M. Hillis, C. Moritz, and B.K. Mable. 2nd Edn., Sinauer Associates, Inc. Sunderland.

    Google Scholar 

  • Nei, M, 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & A.K. Roychoudhury, 1993. Evolutionary relationships of human populations on a global scale. Mol. Biol. Evol. 10: 927–943.

    PubMed  CAS  Google Scholar 

  • Novick, G.E., M.A. Batzer, P.L. Deininger & R.J. Herrera, 1996. The mobile genetic element Alu in the human genome. Bioscience 46: 32–41.

    Article  Google Scholar 

  • Novick, G.E., C.C. Novick, J. Yunis, E. Yunis, P. Antunez de Mayolo, W.D. Scheer, P.L. Deininger, M. Stoneking, D.S. York, M.A. Batzer & R.J. Herrera, 1998. Polymorphic Alu insertions and the Asian origin of native American populations. Hum. Biol. 70(1): 23–39.

    PubMed  CAS  Google Scholar 

  • Perez-Lezaun, A., F. Calafell, E. Mateau, D. Comas, I. Bosch & J. Bertranpetit, 1997. Allele frequency of 20 microsatellites in a worldwide population survey. Hum. Hererd. 47: 189–196.

    Article  CAS  Google Scholar 

  • Rogers, J.S., 1986. Deriving phylogenetic trees from allele frequencies: A comparison of nine genetic distances. Syst. Zool. 35: 297–310.

    Article  Google Scholar 

  • Saiton, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Schlötter, C. & D. Tautz, 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20: 211–215.

    Google Scholar 

  • Shriver, M.D., J. Li, R. Chakraborty & E. Boerwinkle, 1993. VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach. Genetics. 134: 983–993.

    PubMed  CAS  Google Scholar 

  • Sneath, P.H.A. & R.R. Sokal, 1973. Numerical taxonomy: The principles and practice of numerical classification. W.H. Freeman. San Francisco.

    Google Scholar 

  • Swofford, D.L. & S.H. Berlocher, 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst. Zool. 36: 293–325.

    Article  Google Scholar 

  • Swofford. D.L., G.J. Olsen, P.J. Waddell & D.M. Hillis, 1996. Phylogenetic Inference, pp. 407–514 in Molecular Systematics, edited by D.M. Hillis, C. Moritz, and B.K. Mable. 2nd Edn., Sinauer Associates, Inc. Sunderland.

    Google Scholar 

  • Swofford, D.L., 1998. PAUP*. Phylogenetic analysis using parsimony (* and Other Methods). Vers. 4.0. Sinauer Associates, Inc., Sunderland.

    Google Scholar 

  • Szmulewicz, M.N., G.E. Novick & R.J. Herrera, 1998. Effects of Alu insertions on gene function. Electrophoresis 19: 1260–1264.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D., 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463–6471.

    PubMed  CAS  Google Scholar 

  • Thomas, E. & R.J. Herrera, 1998. Multiplex polymerase chain reaction of Alu polymorphic insertions. Electrophoresis 19: 2373–2379.

    Article  PubMed  CAS  Google Scholar 

  • Ullu, E. & A.M. Weiner, 1985. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Walkinshaw, M., L. Strickland, H. Hamilton, K. Denning & T. Gayley, 1996. DNA profiling in two Alaskan native populations using HLA-DQA1, PM and D1S80 loci. J. Forensic Sci. 41(3): 478–484.

    PubMed  CAS  Google Scholar 

  • Weber, J.L. & P.E. May, 1989. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

York, D.S., Blum, V.M., Low, J.A. et al. Phylogenetic signals from point mutations and polymorphic Alu. Genetica 107, 163–170 (1999). https://doi.org/10.1023/A:1004078805609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004078805609

Navigation