Skip to main content
Log in

Molecular systematics of sponges (Porifera)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The first application of molecular systematics to sponges was in the 1980s, using allozyme divergence to dis-criminate between conspecific and congeneric sponge populations. Since this time, a fairly large database has been accumulated and, although the first findings seemed to indicate that sponge species were genetically more divergent than those of other marine invertebrates, a recent review of the available dataset indicates that levels of interspecific gene identities in most sponges fall within the normal range found between species of other invertebrates. Nevertheless, some sponge genera have species that are extremely divergent from each other, suggesting a possible polyphyly of these genera. In the 1990s, molecular studies comparing sequences of ribosomal RNA have been used to reappraise the phylogenetic relationships among sponge genera, families, orders and classes. Both the 18S small subunit and the 28S large subunit rRNA genes have been sequenced (41 complete or partial and 75 partial sequences, respectively). Sequences of 18S rRNA show good support for Porifera being true Metazoa, but they are not informative for resolving relationships among genera, families or orders. 28S rRNA domains D1 and D2 appear to be more informative for the terminal nodes and provide resolution for internal topologies in sufficiently closely related species, but the deep nodes between orders or classes cannot be resolved using this molecule. Recently, a more conserved gene, Hsp70, has been used to try to resolve the relationships in the deep nodes. Metazoan monophyly is very well supported. Nevertheless, the divergence between the three classes of Porifera, as well as the divergence between Porifera, Cnidaria and Ctenophora, is not resolved. Research is in progress using other genes such as those of the homeodomain, the tyrosine kinase domain, and those coding for the aggregation factor. For the moment the dataset for these genes is too restricted to resolve the phylogenetic relationships of these phyla. However, whichever the genes, the phylogenies obtained suggest that Porifera could be paraphyletic and that the phylogenetic relationships of most of the families and orders of the Demospongiae have to be reassessed. The Calcarea and Hexactinellida are still to be studied at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif, E., R. Zardoya & A. Meyer, 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. mol. Evol. 47: 394–405.

    Google Scholar 

  • Aguinaldo, A. M. A., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff & J. A. Lake, 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489–492.

    Google Scholar 

  • Alvarez de Glasby, B., 1998. The phylogenetic relationships of the family Axinellidae (Porifera, Demospongiae). Ph.D. Thesis, The Australian National University, Canberra.

    Google Scholar 

  • Bergquist, P. R., 1978. Sponges. Hutchinson, London.

    Google Scholar 

  • Biesalski, H. K., G. Doepner, G. Tzimas, V. Gamulin, H. C. Schröder, R. Batel, H. Nau & W. E. G. Müller, 1992. Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774.

    Google Scholar 

  • Borchiellini, C., N. Boury-Esnault, J. Vacelet & Y. Le Parco, 1998. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol. Biol. Evol. 15: 647–655.

    Google Scholar 

  • Boury-Esnault, N., M. Klautau, C. Bézac, J. Wulff & A. M. Solé-Cava, 1999. Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J. mar. biol. Ass. U.K. 79: 39–59.

    Google Scholar 

  • Boury-Esnault, N., A. M. Solé-Cava & J. P. Thorpe, 1992. Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). J. nat. Hist. 26: 271–284.

    Google Scholar 

  • Boute, N., J. Y. Exposito, N. Boury-Esnault, J. Vacelet, N. Noro, K. Miyazaki, K. Yoshigato & R. Garrone, 1996. Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol. Cell. 88: 37–44.

    Google Scholar 

  • Braekman, J.-C., D. Daloze, C. Stoller & R. W. M. van Soest, 1992. Chemotaxonomy of Agelas (Porifera: Demospongiae). Biochem. Syst. Ecol. 20: 417–431.

    Google Scholar 

  • Budin, K. & H. Philippe, 1998. New insights into the phylogeny of Eukaryotes based on ciliate Hsp70 sequences. Mol. Biol. Evol. 15: 943–956.

    Google Scholar 

  • Cavalier-Smith, T., M. T. E. P. Allsopp, E. E. Chao, N. Boury-Esnault & J. Vacelet, 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can. J. Zool. 74: 2031–2045.

    Google Scholar 

  • Chombard, C., 1998. Les Demospongiae à asters: essai de phylogénie moléculaire. Homologie du caractère 'aster'. Ph.D. Thesis, Museum, national d'Histoire naturelle Paris.

  • Chombard, C., N. Boury-Esnault & S. Tillier, 1998. Reassesment of homology of morphological charcters in tetractinellid sponges based on molecular data. Syst. Biol. 47: 351–366.

    Google Scholar 

  • Chombard, C., A. Tillier, N. Boury-Esnault & J. Vacelet, 1997. Polyphyly of 'sclerosponges' (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol. Bull. 193: 359–367.

    Google Scholar 

  • Christen, R., A. Ratto, A. Baroin, R. Perasso, K. G. Grell & A. Adoutte, 1991. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S rRNA, reveals an early emergence of triploblasts. Embo J. 10: 499–503.

    Google Scholar 

  • Collins, A. G., 1998. Evaluating multiple alternative hypotheses for the origin of bilateria: An analysis of 18S rRNA molecular evidence. Proc. natn. Acad. Sci. U.S.A. 95: 15458–15463.

    Google Scholar 

  • Coutinho, C. C., S. Vissers & G. Van de Vyver, 1994. Evidence of homeobox genes in the freshwater sponge Ephydatia fluviatilis. In van Soest, R. W. M., T. M. G. van Kempen & J. C. Braekman (eds), Sponge in Time and Space; Biology, Chemistry, Paleontology. A. A. Balkema, Rotterdam: 385–388.

    Google Scholar 

  • Dams, E., A. Vandenberghe & R. de Wachter, 1982. Nucleotide sequence of three Poriferan 5S ribosomal RNAs. Nucl. Acids Res. 10: 5297–5302.

    Google Scholar 

  • Davies, R. E., 1997. Surprising diversity and distribution of spliced leader RNAs in flatworms. Mol. Biochem. Parasitol. 87: 29–48.

    Google Scholar 

  • Degnan, B. M., S. M. Degnan, A. Giusti & D. E. Morse, 1995. A hox/hom homeobox gene in sponges. Gene 155: 175–177.

    Google Scholar 

  • Degnan, B. M., S. M. Degnan, T. Naganuma & D. E. Morse, 1993. The ETS multigene family is conserved throughout the Metazoa. Nucl. Acids Res. 21: 3479–3484.

    Google Scholar 

  • Delage, Y. & E. Hérouard, 1899. Traité de zoologie concrète (Mésozoaires-Spongiaires), vol. 2. Schleicher Frères, Paris.

    Google Scholar 

  • Exposito, J.-Y. & R. Garrone, 1990. Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc. natn. Acad. Sci. U.S.A. 87: 6669–6673.

    Google Scholar 

  • Fernàndez-Busquets, X. & M. M. Burger, 1997. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J. biol. Chem. 272: 27839–27847.

    Google Scholar 

  • Finnerty, J. R., 1998. Homeoboxes in sea anemones and other nonbilaterian animals: implications for the evolution of the Hox cluster and the zootype. Curr. Top. dev. Biol. 40: 211–254.

    Google Scholar 

  • Fromont, J. P. & P. R. Bergquist, 1990. Structural characters and their use in sponge taxonomy; when is a sigma not a sigma? In Rützler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, D.C: 273–278.

    Google Scholar 

  • Gamulin, V., K. Pfeifer, H. Bretting, I. Spreitzer & W. E. G. Müller, 1994. Identification and characterization of the first S-type lectins from invertebrates: isolation from the marine sponge Geodia cydonium. In Müller, W. E. G. (ed.), Use of Aquatic Invertebrates as Tools for Monitoring of Environmental Hazards. Gustav Fischer Verlag, Stuttgart: 213–223.

    Google Scholar 

  • Gamulin, V., A. Skorokhod, V. Kavsan, I. M. Müller & W. E. G. Müller, 1997. Experimental indication in favor of the intronslate theory: the receptor tyrosine kinase gene from the sponge Geodia cydonium. J. mol. Evol. 44: 242–252.

    Google Scholar 

  • Gething, M. J. & J. P. Sambrook, 1992. Protein folding in the cell. Nature 355: 33–45.

    Google Scholar 

  • Gupta, R. S. & G. B. Golding, 1993. Evolution of Hsp70 gene and its implications regarding relationships between Archaebacteria, Eubacteria, and Eukaryotes. J. mol. Evol. 37: 573–582.

    Google Scholar 

  • Haeckel, E., 1873. On the Calcispongiae, their position in the animal kingdom. Ann. Mag. nat. Hist. 4: 241–262.

    Google Scholar 

  • Halanych, K. M., 1991. 5S ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol. Biol. Evol. 8: 249–253.

    Google Scholar 

  • Hirabayashi, J. & K.-I. Kasai, 1998. Evolution of animal lectins. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 45–88.

    Google Scholar 

  • Itskovich, V. B., S. I. Belikov, S. M. Efremova & Y. Masuda, 1999. Phylogenetic relationships between Lubomirskiidae, Spongillidae and some marine sponges according partial sequences of 18S rDNA. Mem. Queensland Mus. 44: 275–280.

    Google Scholar 

  • Kanzawa, N., H. Takano-Ohmuro & K. Maruyama, 1995. Isolation and characterization of sea sponge myosin. Zool. Sci. 12: 765–769.

    Google Scholar 

  • Kelly-Borges, M., P. R. Bergquist & P. L. Bergquist, 1991. Phylogenetic relationships within the order Hadromerida (Porifera, Demospongiae, Tetractinomorpha) as indicated by ribosomal RNA sequence comparisons. Biochem. Syst. Ecol. 19: 117–125.

    Google Scholar 

  • Kelly-Borges, M. & S. A. Pomponi, 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae): A preliminary assessment using ribosomal DNA sequence comparisons. Mol. mar. Biol. Biotechnol. 3: 87–103.

    Google Scholar 

  • Kjer, K. M., 1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4: 314–330.

    Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Solé-Cava, 1999. Does cosmopolitanism in morphologically simple species result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53: 1414–1422.

    Google Scholar 

  • Klautau, M., A. M. Solé-Cava & R. Borojevic, 1994. Biochemical systematics of sibling sympatric species of Clathrina (Porifera: Calcarea). Biochem. Syst. Ecol. 22: 367–375.

    Google Scholar 

  • Kobayashi, M. & N. Satoh, 1998. Early evolution of the Metazoa: an inference from the elongation factor-1α. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 177–185.

    Google Scholar 

  • Kobayashi, M., M. Takahashi, H. Wada & N. Satoh, 1993. Molecular phylogeny inferred from sequences of small subunit ribosomal DNA, supports the monophyly of the Metazoa. Zool. Sci. 10: 827–833.

    Google Scholar 

  • Komiya, H., M. Hasegawa & S. Takemura, 1983. Nucleotide sequences of 5S rRNAs from sponge Halichondria japonica and tunicate Halocynthia roretzi and their phylogenetic positions. Nucl. Acids Res. 11: 1969–1974.

    Google Scholar 

  • Koziol, C., R. Borojevic, R. Steffen & W. E. G. Müller, 1997. Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech. Ageing Dev. 100: 107–120.

    Google Scholar 

  • Koziol, C., N. Kobayashi, I. M. Müller & W. E. G. Müller, 1998a. Cloning of sponge heat shock proteins: evolutionary relationships between the major kingdoms. J. Zool. Syst. Evol. Res. 36: 101–109.

    Google Scholar 

  • Koziol, C., S. P. Leys, I. M. Müller & W. E. G. Müller, 1998b. Cloning of Hsp70 genes from the marine sponge Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges. Biol. J. linn. Soc. 62: 581–592.

    Google Scholar 

  • Koziol, C., C. Wagner-Hülsmann, A. Mikoc, V. Gamulin, M. Kruse, Z. Pancer, H. Schacke & W. E. G. Müller, 1996. Cloning of a heat inducible biomarker, the cDNA encoding the 70–kDa heat shock protein, from the marine sponge Geodia cydonium: response to natural stressors. Mar. Ecol. Prog. Ser. 136: 153–161.

    Google Scholar 

  • Krasko, A., I. M. Müller & W. E. G. Müller, 1997a. Evolutionary relationships of the metazoan α α-crystallins, including that from the marine sponge Geodia cydonium. Proc. r. Soc. Lond. B 264: 1077–1084.

    Google Scholar 

  • Krasko, A., U. Scheffer, C. Koziol, Z. Pancer, R. Batel, F. A. Badria & W. E. G. Müller, 1997b. Diagnosis of sublethal stress in the marine sponge Geodia cydonium: application of the 70 kDa heatshock protein and a novel biomarker, the Rab GDP dissociation inhibitor, as probes. Aquat. Toxicol. 37: 157–168.

    Google Scholar 

  • Kruse, M., V. Gamulin, H. Cetkovic, Z. Pancer, I. M. Müller & W. E. G. Müller, 1996. Molecular evolution of the Metazoan protein kinase C multigene family. J. mol. Evol. 43: 374–383.

    Google Scholar 

  • Kruse, P. D., A. Mikoc, H. Cetkovic, V. Gamulin, B. Rinkevich, I. Müller & W. E. G. Müller, 1994. Molecular evidence for the presence of a developmental gene in the lowest animals: identification of a homeobox-like gene in the marine sponge Geodia cydonium. Mech. Ageing Dev. 77: 43–54.

    Google Scholar 

  • Lafay, B., N. Boury-Esnault, J. Vacelet & R. Christen, 1992. An analysis of partial 28S ribosomal RNA sequences suggests early radiations of sponges. Biosystems 28: 139–151.

    Google Scholar 

  • Lafay, B., A. B. Smith & R. Christen, 1995. A combined morphological and molecular approach to the phylogeny of the Asteroids. Syst. Biol. 44: 190–208.

    Google Scholar 

  • Lévi, C., 1956. Etude des Halisarca de Roscoff. Embryologie et systématique des démosponges. Arch. Zool. exp. gén. 93: 1–184.

    Google Scholar 

  • Lévi, C., 1973. Systématique de la classe des Demospongiaria (Démosponges). In Grassé, P. P. (ed.), Spongiaires. Vol. 3(1). Masson & Co., Paris: 577–632.

    Google Scholar 

  • Li, C.-W., J.-Y. Chen & T.-E. Hua, 1998. Precambrian sponges with cellular structures. Science 279: 879–882.

    Google Scholar 

  • Lindquist, S. & E. A. Craig, 1988. The heat shock proteins. Annu. Rev. Genet. 22: 631–677.

    Google Scholar 

  • Lorenz, B., R. Bohnensack, V. Gamulin, R. Steffen & W. E. G. Müller, 1996. Regulation of motility of cells from marine sponges by calcium ions. Cell. Signal. 8: 517–524.

    Google Scholar 

  • Müller, W. E. G., 1997. Molecular phylogeny of Eumetazoa: experimental evidence for monophyly of animals based on genes in sponges (Porifera). Progr. mol. subcell. Biol. 19: 89–132.

    Google Scholar 

  • Müller, W. E. G., I. Müller & V. Gamulin, 1994. Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium. In Müller, W. E. G. (ed.), Use of Aquatic Invertebrates as Tools for Monitoring of Environmental Hazards. Gustav Fischer Verlag, Stuttgart: 187–200.

    Google Scholar 

  • Muricy, G., A. M. Solé-Cava, J. P. Thorpe & N. Boury-Esnault, 1996. Genetic evidence for extensive cryptic speciation in the subtidal sponge Plakina trilopha (Porifera: Demospongiae: Homoscleromorpha). Mar. Ecol. Prog. Ser. 138: 181–187.

    Google Scholar 

  • Nielsen, C., 1995. Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press, Oxford.

    Google Scholar 

  • Nikoh, N., N. Iwabe, K. Kuma, M. Ohno, T. Sugiyama, Y. Watanabe, K. Yasui, Z. Schi-cui, K. Hori, Y. Shimura & T. Miyata, 1997. An estimate of divergence time of parazoa and eumetazoa and that of cephalochordata and vertebrata by aldolase and triose phosphate clocks. J. mol. Evol. 45: 97–106.

    Google Scholar 

  • Odorico, D. M. & D. J. Miller, 1997. Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5'-end of the 23S-like rDNA. Proc. r. Soc. Lond. B 264: 77–82.

    Google Scholar 

  • Pancer, Z., M. Kruse, I. Müller & W. E. G. Müller, 1997. On the origin of metazoan adhesion receptors: cloning of integrin α subunit from the sponge Geodia cydonium. Mol. Biol. Evol. 14: 391–398.

    Google Scholar 

  • Pfeifer, K., W. Frank, H. C. Schröder, V. Gamulin, B. Rinkevich, R. Batel, I. M. Müller & W. E. G. Müller, 1993b. Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggregation of cells. J. Cell Sci. 106: 545–554.

    Google Scholar 

  • Pfeifer, K., M. Haasemann, V. Gamulin, H. Bretting, F. Fahrenholz & W. E. G. Müller, 1993a. S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3: 179–184.

    Google Scholar 

  • Richelle-Maurer, E., G. van de Vyver, S. Vissers & C. C. Coutinho, 1998. Homeobox-containing genes in freshwater sponges: characterization, expression, and phylogeny. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 157–175.

    Google Scholar 

  • Rodrigo, A. G., P. R. Bergquist, P. L. Bergquist & P. R. Reeves, 1994. Are sponges animals? An investigation into the vagaries of phylogenetic inference. In van Soest, R. W. M., T. M. G. van Kempen & J. C. Braekman (eds), Sponge in Time and Space; Biology, Chemistry, Paleontology. A. A. Balkema, Rotterdam: 47–54.

    Google Scholar 

  • Rosell, D. & M. J. Uriz, 1997. Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision. Cladistics 13: 349–366.

    Google Scholar 

  • Sarà, M., G. Corriero & G. Bavestrello, 1993. Tethya (Porifera, Demospongiae) species coexisting in a Maldivian coral reef lagoon-taxonomical, genetic and ecological data. Mar. Ecol. 14: 341–355.

    Google Scholar 

  • Schäcke, H., H. C. Schröder, V. Gamulin, B. Rinkevich, I. Müller & W. E. G. Müller, 1994. Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol. Membrane Biol. 11: 101–107.

    Google Scholar 

  • Seimiya, M., H. Ishiguro, K. Miura, Y. Watanabe & Y. Kurosawa, 1994. Homeobox-containing genes in the most primitive metazoa, the sponges. Eur. J. Biochem. 221: 219–225.

    Google Scholar 

  • Seimiya, M., M. Naito, Y. Watanabe & Y. Kurosawa, 1998. Homeobox genes in the freshwater sponge Ephydatia fluviatilis. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 133–155.

    Google Scholar 

  • Seimiya, M., Y. Watanabe & Y. A. D. Kurosawa, 1997. Identification of POU-class homeobox genes in a freshwater sponge and the specific expression of these genes during differentiation. Eur. J. Biochem. 243: 27–31.

    Google Scholar 

  • Smith, A. B., B. Lafay & R. Christen, 1992. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Phil. Trans. r. Soc. Lond. B 338: 365–382.

    Google Scholar 

  • Smith, A. B., G. L. Paterson & B. Lafay, 1995. Ophiuroid phylogeny and higher taxonomy: morphological, molecular and paleontological perspectives. Zool. J. linn. Soc. 114: 213–243.

    Google Scholar 

  • Soest, R. W. M. van, 1990. Toward a phylogenetic classification of sponges. In Rützler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, D.C: 344–350.

    Google Scholar 

  • Soest, R. W. M. van, 1991. Demosponge higher taxa classification re-examined. In Reitner, J. & H. Keupp (eds), Fossil and Recent Sponges. Springer-Verlag, Berlin: 54–71.

    Google Scholar 

  • Solé-Cava, A. M. & N. Boury-Esnault, 1999. Patterns of intra and interspecific divergence in marine sponges. Mem. Queensland Mus. 44: 591–602.

    Google Scholar 

  • Solé-Cava, A. M., N. Boury-Esnault, J. Vacelet & J. P. Thorpe, 1992. Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Mar. Biol. 113: 299–304.

    Google Scholar 

  • Solé-Cava, A. M., M. Klautau, N. Boury-Esnault, R. Borojevic & J. P. Thorpe, 1991a. Genetic evidence for cryptic speciation in allopatric populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Mar. Biol. 111: 381–386.

    Google Scholar 

  • Solé-Cava, A. M. & J. P. Thorpe, 1986. Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae: Hadromerida). Mar. Biol. 93: 247–253.

    Google Scholar 

  • Solé-Cava, A. M., J. P. Thorpe & R. Manconi, 1991b. A new Mediterranean species of Axinella detected by biochemical genetic methods. In Reitner, J. & H. Keupp (eds), Fossil and Recent Sponges. Springer-Verlag, Berlin: 313–321.

    Google Scholar 

  • Thorpe, J. P., 1983. Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In Oxford, R. S. & D. Rollison (eds), Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, London: 131–152.

    Google Scholar 

  • Vacelet, J., 1985. Coralline sponges and the evolution of the Porifera. In Conway-Morris, S., J. D. George, R. Gibson & H. M. Platt (eds), The Origin and Relationships of Lower Invertebrates. Clarendon Press, Oxford: 1–13.

    Google Scholar 

  • Wainwright, P. O., G. Hinckle, M. L. Sogin & S. K. Stickel, 1993. Monophyletic origins of the Metazoa: an evolutionary link with Fungi. Science 260: 340–342.

    Google Scholar 

  • West, L. & D. Powers, 1993. Molecular phylogenetic position of hexactinellid sponges in relation to the Protista and Demospongiae. Mol. mar. Biol. Biotechnol. 2: 71–75.

    Google Scholar 

  • Zrzavy, J., S. Mihulka, P. Kepka & A. Bezdek, 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14: 249–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchiellini, C., Chombard, C., Lafay, B. et al. Molecular systematics of sponges (Porifera). Hydrobiologia 420, 15–27 (2000). https://doi.org/10.1023/A:1003996517083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003996517083

Navigation