Skip to main content
Log in

Gene transfer technology in aquaculture

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The gene transfer technique, transgenesis, has permitted the transfer of genes from one organism to another to create new lineages of organisms with improvement in traits important to aquaculture. Genetically modified organisms (GMOs), therefore, hold promise for producing genetic improvements, such as enhanced growth rate, increased production and efficiency, disease resistance and expanded ecological ranges. The basic procedure to generate transgenic fish for aquaculture includes: (1) design and construction of transgenic DNA; (2) transfer of the gene construct into fish germ cells; (3) screening for transgenic fish; (4) determination of transgene expression and phenotype; (5) study of inheritance; and (6) selection of stable lines of transgenics.

GMOs offer economic benefits, but also pose environmental threats. Optimising the mix of benefits and risks is of fundamental importance. The potential economic benefits of transgenic technology to aquaculture are obvious. Transgenic fish production has the goal of producing food for human consumption; thus the design of genetic constructs must take into consideration the potential risks to consumer health, as well as marketing strategies and product acceptance in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beardmore, J. A., 1997. Transgenics: autotransgenics and allotransgenics. Transgenic Res. 6: 107–108.

    Google Scholar 

  • Chatakondi, N., R. T. Lovell, P. L. Duncan, M. Hayat, T. T. Chen, D. A. Powers, J. D. Weete, K. Cummins & R. A. Dunham, 1995. Body composition of transgenic common carp, Cyprinus carpio, containing rainbow trout growth hormone gene. Aquaculture 138: 1–4.

    Google Scholar 

  • CNPq, 1998. Apoio ao crescimento da aqüicultura no Brasil. Conselho Nacional de Desenvolvimento Científico e Tecnológico, Boletim Informativo no. 4, Brasilia.

  • Devlin, R. H., T. Y. Yesaki, C. A. Biagl, E. M. Donaldson, P. Swanson & W.-K. Chan, 1994. Extraordinary salmon growth. Nature 371: 209–210.

    Google Scholar 

  • Du, S.-J., Z. Gong, G. L. Fletcher, M. A. Shears, M. J. King, D. R. Idler & C. L. Hew, 1992. Growth enhancement in transgenic Atlantic salmon by the use of an 'all fish' chimeric growth hormone gene construct. Biotechnology 10: 176–181.

    Google Scholar 

  • Dunham, R. A., 1999. Utilization of transgenic fish in developing countries: potential benefits and risks. J. World Aquacult. Soc. 30: 1–11.

    Google Scholar 

  • FAO, 1997. Review of the state of world fishery resources: marine fisheries. FAO Fisheries Circular No. 920 FIRM/C920, FAO, Rome.

    Google Scholar 

  • Haimovici, M., 1997. Recursos pesqueiros demersais da região sul. Fundação de Estudos do Mar, Rio de Janeiro.

    Google Scholar 

  • Hew, C. L., G. Fletcher, S. Du, Z. Gong, M. Shears & P. Davies, 1991. Biotechnology in aquatic sciences: improved freezing tolerance and enhanced growth in Atlantic salmon by gene transfer. Bull. Inst. Zool. 16: 341–356.

    Google Scholar 

  • Hew, C. L. & G. Fletcher, 1997. Transgenic fish for aquaculture. Chem. Indust. 1997: 311–314.

    Google Scholar 

  • Hong, Y., C. Winkler & M. Schartl, 1996. Pluripotency and differentiation of embrionic stem cell lines from the medakafish (Oryzias latipes). Mech. Dev. 60: 33–44.

    Google Scholar 

  • Khoo, H. W., L. H. Ang & H. B. Lim, 1993. Gene transfer by microinjection in the zebrafish Brachydanio rerio. In Murphy, D. & D. A. Carter (eds), Transgenesis Techniques, Principles and Protocols. Methods in Molecular Biology. Humana Press, Totowa, vol. 18: 87–94.

    Google Scholar 

  • Khoo, H. W., 1995. Transgenesis and its applications in aquaculture. Asian Fish. Sci. 8: 1–25.

    Google Scholar 

  • Maclean, N., 1998. Regulation and exploitation of transgenes in fish. Mutat. Res. 399: 255–266.

    Google Scholar 

  • Martinez, R., 1997. Engineering the blue revolution. Seedling 14: 20–30.

    Google Scholar 

  • Organization for Economic Cooperation and Development, 1992. The proceedings of the OECD symposium on aquatic biotechnology and food safety. O. E. C. D., Paris.

    Google Scholar 

  • Rana, K., 1997. Recent trends in global aquaculture production: 1984–1995. FAO Aquacult. Newslt. 16: 14–19.

    Google Scholar 

  • Sun, L., C. S. Bradford, C. Ghosh, P. Collodi & D. W. Barnes, 1995. ES-like cell cultures derived from early zebrafish embryos. Mol. mar. Biol. Biotechnol. 4: 193–199.

    Google Scholar 

  • Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind & K. H. S. Campbell, 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813.

    Google Scholar 

  • World Health Organization, 1991. Strategies for assessing the safety of foods produced by biotechnology. Report of a Joint FAO/WHO Consultation, Geneva.

  • Zhu, Z., G. Li, L. He & S. Chen, 1985. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). Zeitsch. f. angewandt Ichthyol. 1: 31–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, J.A., Marins, L.F. & Sanchez, A. Gene transfer technology in aquaculture. Hydrobiologia 420, 91–94 (2000). https://doi.org/10.1023/A:1003985620718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003985620718

Navigation