Skip to main content
Log in

Mass transport in lithium-battery solvents

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We describe and implement a microelectrode procedure for the determination of important transport properties required for the evaluation of liquid electrolytes used in lithium-based batteries. Three solvents of interest (propylene carbonate, ethylene carbonate, and diethyl carbonate) and two lithium salts (lithium hexafluorophosphate and lithium perchlorate) are investigated. In addition, by combining microelectrode and radiometric analyses, we are able to characterize fully the transport phenomena in the nonaqueous solvent + salt systems. Thus a radiometric technique is used to monitor solvent transport, both under diffusion and current-passage conditions, and the solvent diffusion coefficient is reported as a function of salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Doyle, T.F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1526.

    Google Scholar 

  2. T.F. Fuller, M. Doyle and J. Newman, J. Electrochem. Soc. 141 (1994) 1.

    Google Scholar 

  3. T.F. Fuller, M. Doyle and J. Newman, J. Electrochem. Soc. 141 (1994) 982.

    Google Scholar 

  4. M. Doyle, J. Newman and J. Reimers, J. Power Sources 52 (1994) 211.

    Google Scholar 

  5. M. Doyle, T.F. Fuller and J. Newman, Electrochimica Acta 39 (1994) 2073.

    Google Scholar 

  6. M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz and J-M. Tarascon, J. Electrochem. Soc. 143 (1996) 1890.

    Google Scholar 

  7. M.W. Verbrugge, J. Electrostatics 34 (1995) 61.

    Google Scholar 

  8. M.W. Verbrugge and B.J. Koch, J. Electrochem. Soc. 143 (1996) 600.

    Google Scholar 

  9. M.W. Verbrugge and B.J. Koch, J. Electrochem. Soc. 146 (1999) 833.

    Google Scholar 

  10. M.W. Verbrugge and B.J. Koch, J. Electrochem. Soc. 143 (1996) 24.

    Google Scholar 

  11. R.J. Jasinski and S. Kirkland, Anal. Chem. 39 (1967) 1663.

    Google Scholar 

  12. M.W. Verbrugge and B.J. Koch, J. Electroanal. Chem. 367 (1994) 123.

    Google Scholar 

  13. M.W. Verbrugge and B.J. Koch, J. Electrochem. Soc. 141 (1994) 3053.

    Google Scholar 

  14. J.J. Xu and G.C. Farrington, J. Electrochem. Soc. 145 (1998) 744.

    Google Scholar 

  15. L. Christie, A.M. Christie and C.A. Vincent, J. Electrochem. Soc. 2 (1999) 187.

    Google Scholar 

  16. J. Newman, ‘Electrochemical Systems,’ second edition, Prentice-Hall, Englewood Cliffs, New Jersey (1991).

    Google Scholar 

  17. K.B. Oldham, J. Electroanal. Chem. 122 (1981) 1.

    Google Scholar 

  18. K. Aoki and J. Osteryoung, J. Electroanal. Chem. 122 (1981) 19.

    Google Scholar 

  19. K. Aoki and J. Osteryoung, 160 (1984) 335.

  20. J. Barthel, H.-J. Gores and G. Schmeer, Ber. Bunsenges. Phys. Chem. 83 (1979) 911.

    Google Scholar 

  21. H.-J. Gores and J. Barthel, J. Solution Chem. 9 (1980) 939.

    Google Scholar 

  22. R. Jasinski, ‘Electrochemistry and Application of Propylene Carbonate.’ In Advances in Electrochemistry and Electrochemical Engineering, (edited by P. Delahay and C.W. Tobias) Vol. 8, Wiley-Interscience, New York, NY (1971).

    Google Scholar 

  23. S.G. Meibuhr, J. Electrochem. Soc. 117 (1970) 56.

    Google Scholar 

  24. B. Scrosati and S. Megahed, ‘Rechargeable Lithium-Ion (Rocking Chair) Batteries for Consumer, Electronic, Military, and Aerospace Applications,’ an Electrochemical Society Short Course, The Electrochemical Society (1993).

  25. R.J. Blint, J. Electrochem. Soc. 142 (1995) 698.

    Google Scholar 

  26. Y. Ma, M. Doyle, T.F. Fuller, M.M. Doeff, L.C. De Jonghe and J. Newman, J. Electrochem. Soc. 142 (1995) 1859.

    Google Scholar 

  27. J. Sullivan, D. Hansen and R. Keller, J. Electrochem. Soc. 117 (1970) 779.

    Google Scholar 

  28. W.M. Hedges and D. Pletcher, J. Chem. Faraday Trans. 1 82 (1986) 179.

    Google Scholar 

  29. C.G. Zoski and A.M. Bond, Anal. Chem. 62 (1990) 37.

    Google Scholar 

  30. A.C. Michael, R.M. Wightman and C.A. Amatore, J. Electroanal. Chem. 267 (1989) 33.

    Google Scholar 

  31. M.W. Verbrugge and D.R. Baker, J. Phys. Chem. 96 (1992) 4572.

    Google Scholar 

  32. C.A. Amatore and B. Fosset, J. Electroanal. Chem. 328 (1992) 21.

    Google Scholar 

  33. P.N. Pintauro and D.N. Bennion, Ind. Eng. Chem. Fundam. 23 (1984) 234.

    Google Scholar 

  34. K.H. Keller, E.R. Canales and S.I. Yum, J. Phys. Chem. 75 (1971) 379.

    Google Scholar 

  35. M.W. Verbrugge, J. Electrochem. Soc. 136 (1989) 417.

    Google Scholar 

  36. M.W. Verbrugge and R.F. Hill, Electrochim. Acta 37 (1992) 221.

    Google Scholar 

  37. Y. Marcus, ‘Ion Solvation,’ Wiley, New York, NY (1985). (See chapter 6, ‘Ion solvation in nonaqueous solvents.’)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbrugge, M.W., Koch, B.J. & Schneider, E.W. Mass transport in lithium-battery solvents. Journal of Applied Electrochemistry 30, 269–275 (2000). https://doi.org/10.1023/A:1003984511421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003984511421

Navigation