Skip to main content
Log in

Sure facts, speculations, and open questions about the evolution of transposable element copy number

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are sequences capable of multiplying in their host's genome. They survive by increasing copy numbers due to transpositions, and natural selection washes them out because hosts with heavier loads of TEs have lower fitness. The available phylogenetic evidence supports the view that TEs have existed in living organisms for hundreds of millions of years. A fundamental question facing the field is how can an equilibrium be attained between transposition and selection which allows these parasitic genetic elements to persist for such a long time period? To answer this question, it is necessary to understand how the rate of TE transposition is controlled and to describe the mechanisms with which natural selection opposes TE accumulation. Perhaps the best models for such a study are copia and gypsy retrotransposons in Drosophila. Their average rate of transposition in nature is between 10−5 − 10−4 transpositions per copy per generation. Unlike nature, transposition rates vary widely, from zero to 10−2, between laboratory lines. This variability in transposition rate is controlled by host genes. It is probable that in nature TE site heterogeneity is caused by frequent transpositions in rare flies with permissive alleles, and no transpositions happen in the rest of flies. The average rate of TE transposition in nature may thus depend on the frequency of permissive alleles, which is a function of the rate of mutation from restrictive to permissive alleles, the mechanism and the strength of selection opposing TE multiplication, and population size. Thus, evolution of the frequency of permissive alleles of genes controlling transposition must be accounted for to understand evolution of TE copy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajioka, J.W. & W.F. Eanes, 1989. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–12.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Berg, D.E. & M.M. Howe, 1989 Mobile DNA. American Society for Mickrobiology, Washington, DC.

    Google Scholar 

  • Biemont, C., 1994. Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M′ strain of Drosophila melanogaster. J. Mol. Evol. 39: 466–472.

    PubMed  CAS  Google Scholar 

  • Biemont, C., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.

    Article  PubMed  CAS  Google Scholar 

  • Biemont, C., F. Lemeunier, M.P. Garcia Guerreiro, J.F. Brookfield, S. Gautiers, A. Aulard & E.G. Pasyukova, 1994. Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of D. Melanogaster. Genet. Res. 63: 197–212.

    PubMed  CAS  Google Scholar 

  • Biemont, C., A. Tsitrone, C. Vieira & C. Hoogland, 1997. Transposable element distribution in Drosophila. Genetics 147: 1997–1999.

    PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y., 1991. Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128: 471–486.

    PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y., 1996. Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled. Genet. Res. 67: 199–210.

    Google Scholar 

  • Brookfield, J.F. & R.M. Badge, 1997. Population genetics models of transposable elements. Genetica 100: 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F., E. Montgomery & C.H. Langley, 1984. Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310: 330–331.

    PubMed  CAS  Google Scholar 

  • Bucheton, A., J.-M. Lavige, G. Picard & P. L'Heritier, 1976. Nonmendelian female strerility in Drosophila melanogaster quantitative variation in the efficiency of inducer and reactive strains. Heredity 36: 305–314.

    PubMed  CAS  Google Scholar 

  • Bucheton, A., C. Vaury, M.-C. Chaboissier, P. Abad, A. Pelisson & M. Simonelig, 1992. I elements and the Drosophila genome. Genetica 86: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1991. Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet. Res. 57: 127–135.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1986. The evolution of self-regulated transposition of transposable elements. Genetics 112: 359–383.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1989. The population genetics of Drosophila transposable elements. Annu. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., C.H. Langley & P.D. Sniegowski, 1997. Transposable element distributions in Drosophila. Genetics 147: 1993–1995.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of ten transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet. Res. 54: 113–125.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., A. Lapid & D. Canada, 1992a. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I Element frequencies and distribution. Genet. Res. 60: 103–114.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., A. Lapid & D. Canada, 1992b. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II Inferences on the nature of selection against elements. Genet. Res. 60: 115–130.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994a. The evolutionary dynamics of repetitive DNA in eukariotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Jarne & S. Assimacopoulos, 1994b. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet. Res. 64: 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J.B., W.P. Maddison & M.G. Kidwell, 1994. Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol. Biol. Evol. 11: 40–49.

    PubMed  CAS  Google Scholar 

  • Csink, A.K. & J.F. McDonald, 1990. copia expression is variable among natural populations. Genetics 126: 375–382.

    PubMed  CAS  Google Scholar 

  • Csink, A.K. & J.F. McDonald, 1995. Analysis of copia sequence variation within and between Drosophila species. Mol. Biol. Evol. 12: 83–93.

    PubMed  CAS  Google Scholar 

  • de Frutos, R., K.R. Peterson & M.G. Kidwell, 1992. Distribution of Drosophila melanogaster transposable element sequences in species of the obscura group. Chromosoma 101: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Di Franco, C., D. Galuppi & N. Junakovic, 1992. Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 86: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Eanes, W.F., C. Wesley & B. Charlesworth, 1992. Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genet. Res. 59: 1–14.

    PubMed  CAS  Google Scholar 

  • Eggleston, W.B., D.M. Johnson-Schlitz & W.R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D.J., 1992. Transposable elements, pp 1096–1107 in: The genome of Drosophila melanogaster, edited by D.L. Lindsley and G. Zimm, Academic Press, New York.

    Google Scholar 

  • Flavell, A.J., S.R. Pearce, P.J.S. Heslop-Harrison & A. Kumar, 1997. The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica 100: 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M.L., J.-Y. Sheen, W.J. Gehring & M.M. Green, 1983. Unequal crossing-over associated with assimetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA 80: 5017–5021.

    Article  PubMed  CAS  Google Scholar 

  • Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, D.L., A.R. Lohe & E.R. Lozovskaya, 1997. Regulation of the transposable element mariner. Genetica 100: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, C.A., S.C. Hardies, D.D. Loeb, W.R. Shehee & M.H. Edgell, 1989. LINEs and related retrotransposons: long interspersed repeated sequences in the eukaryotic genome, in: Mobile DNA, edited by Berg, D.E. and M.M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Kaplan, N.L. & J.F.Y. Brookfield, 1983. Transposable element in mendelian populations. III. Statistical results. Genetics 104: 485–495.

    PubMed  Google Scholar 

  • Kazazian, H.H., C. Wong, H. Youssoufian, A.F. Scott, D.G. Phillips & S.E. Antonarakis, 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Kidwell, M.G., J.F. Kidwell & J.A. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833.

    PubMed  Google Scholar 

  • Kim, A., E.S. Belyaeva & M.M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.I., N.V. Lyubomirskaya, E.S. Belyaeva, N.G. Shostack & Yu. V. Ilyuin, 1994. The introduction of a transpositionally active copy of retotransposon gypsy into a stable strain of Drosophila melanogaster causes genetic instability. Mol. Gen. Genet. 242: 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Konieczny A., D.F. Voytas, M.P. Cummings & F.M. Ausubel, 1991. A Superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809.

    PubMed  CAS  Google Scholar 

  • Labrador, M. & V.G. Corces, 1997. Transposable element-host interactions: regulation of insertion and excision. Annu. Rev. Genet. 31: 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C.H., E.A. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    PubMed  CAS  Google Scholar 

  • Leigh-Brown, A.J. & J.E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.

    Google Scholar 

  • Lohe, A.R. & D.L. Hartl, 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13: 549–557.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., E.N. Moriyama & D.L. Hartl, 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62–72.

    PubMed  CAS  Google Scholar 

  • Lozovskaya, E.R., D.L. Hartl & D.A. Petrov, 1995. Genomic regulation of transposable elements in Drosophila. Curr. Op. Genet. Develop. 5: 768–771.

    Article  PubMed  CAS  Google Scholar 

  • Marracci, S., R. Batistoni, G. Pesole, L. Citti & I. Nardi, 1996. Gypsy/Ty3-like elements in the genome of the terrestrial salamander Hydromantes (Amphibia, Urodela). J. Mol. Evol. 43: 584–593.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F., L.V. Matyunina, S. Wilson, I.K. Jordan, N.J. Bowen & W. Miller, 1997. LTR retrotransposons and the evolution of eukariotic enhancers. Genetica 100: 111–115.

    Article  Google Scholar 

  • Montgomery, E.A., B. Charlesworth & C.H. Langley, 1987. A test for for the role of natural selection in stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    PubMed  CAS  Google Scholar 

  • Montgomery, E.A., S.M. Huang, C.H. Langley & B.H. Judd, 1991. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster genome structure and evolution. Genetics 129: 1085–1098.

    PubMed  CAS  Google Scholar 

  • Montgomery, E.A. & C.H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    PubMed  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    PubMed  CAS  Google Scholar 

  • Newfeld, S.J. & N.T. Takaesu, 1999. Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 151: 177–187.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., 1995. The distribution of transposable elements on X chromosomes from a natural population of Drosophila simulans. Genet. Res. 66: 159–166.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1994. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res. 63: 139–144.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1995. The genomic rate of transposable element movement in D. melanogaster. Mol. Biol. Evol. 12: 180–181.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova & T.F.C. Mackay, 1996. Positive association between copia transposition rate and copy number in Drosophila melanogaster. Proc. R. Soc. Lond. B 263: 823–831.

    CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova & T.F.C. Mackay, 1997. Accumulation of transposable elements in laboratory lines of Drosophila melanogaster. Genetica 100: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova, E.A. Morozova & A.J. Flavell, 1998. Quantitative genetic analysis of copia retrotransposon activity in inbred Drosophila melanogaster lines. Genetics 150: 755–766.

    PubMed  CAS  Google Scholar 

  • Pantazidis, A., M. Labrador & A. Fontdevila, 1999. The retrotransposon Osvaldo from Drosophila buzzatii displays all structural features of a functional retrovirus. Mol. Biol. Evol. 16: 909–921.

    PubMed  CAS  Google Scholar 

  • Pasyukova, E.G. & S.V. Nuzhdin, 1993. Doc and copia instability in an isogenic Drosophila melanogaster stock. Mol. Gen. Genet. 240: 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Pasyukova, E.G., S.V. Nuzhdin & D.A. Filatov, 1998. The relationship between the rate of transposition and transposable element copy number for copia, Doc and roo retrotransposons. Genet. Res. in press.

  • Pelisson, A. & J.C. Bregliano, 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I–R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306–313.

    Article  CAS  Google Scholar 

  • Pelisson, A., S.U. Song, N. Prud'homme, P. Smith, A. Bucheton & V.G. Corces, 1994. Gypsy transposition correlates with the production of a retroviralenvelope-like protein under the tissue-specific control of Drosophila flamenco gene. EMBO J. 13: 4401–4411.

    PubMed  CAS  Google Scholar 

  • Pelisson, A., L. Teysset, F. Chalvet, A. Kim, N. Prud'homme, C. Terzian & A. Bucheton, 1997. About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene. Genetica 100: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A., J.L. Schutzman, D.L. Hartl & E.R. Lozovskaya, 1995. Diverse transposable elements are mobilized in hybrid dysgensis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92: 8050–8054.

    Article  PubMed  CAS  Google Scholar 

  • Preston, C.R. & W.R. Engels, 1996. P-element-induced male recombination and gene conversion in Drosophila. Genetics 144: 1611–1622.

    PubMed  CAS  Google Scholar 

  • Ronsseray, S.M., S.M. Lehmann & D. Anxolabehere, 1991. The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129: 501–512.

    PubMed  CAS  Google Scholar 

  • Shevelyov, Yu.Ya., M.D. Balakireva & V.A. Gvozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG-1). Chromosoma 98: 1033–1037.

    Article  Google Scholar 

  • Smith, A.F.A., 1993. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucl. Acids Res. 8: 1863–1872.

    Google Scholar 

  • Sniegowski, P.D. & B. Charlesworth, 1994. Transposable element in numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137: 815–826.

    PubMed  CAS  Google Scholar 

  • Vaury, C., A. Pelisson, P. Abad & A. Bucheton, 1993. Properties of transgenic strains of Drosophila melanogaster containing/transposable elements from Drosophila teissieri. Genet. Res. 61: 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, C. & C. Biemont, 1997. Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. Mol. Biol. Evol. 14: 185–188.

    PubMed  CAS  Google Scholar 

  • Yoshioka, K., H. Honma, M. Zushi, S. Kondo, S. Togashi, T. Miyaki & T. Shiba, 1990. Virus-like particle formation of Drosophila copia through autocatalytic processing. EMBO J. 9: 535–541.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuzhdin, S.V. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica 107, 129–137 (1999). https://doi.org/10.1023/A:1003957323876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003957323876

Navigation