Skip to main content
Log in

I elements and the Drosophila genome

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

LINEs are a large class of transposable elements in eukaryotes. They transpose by reverse transcription of an RNA intermediate. I elements of Drosophila melanogaster belong to this class and are responsible for the I-R system of hybrid dysgenesis. Many results indicate that at the beginning of the century natural populations of this species were devoid of active I elements and that they were invaded by functional I elements in the last decades. Many Drosophila species contain both defective and active I elements. It seems that the latter were lost in Drosophila melanogaster before its spread throughout the world, and that the recent invasion results from the spread of functional elements originating either from another species by horizontal transfer or from an isolated population of the same species. These data are discussed, as well as their significance in evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, P., C. Vaury, A. Pélisson, M.-C. Chaboissier, I. Busseau & A. Bucheton, 1989. A LINE element, the I factor of Drosophila teissieri, is able to transpose in other Drosophila species. PNAS 86: 8887–8891.

    Google Scholar 

  • Berg, R. L., 1974. A simultaneous mutability rise at the singed locus in two out of three Drosophila melanogaster populations studied in 1973. Dros. Inf. Serv. 51: 100–102.

    Google Scholar 

  • Berg, R. L., 1979. Global patterns of mutability in natural populations of Drosophila melanogaster. Genetics 91: s8–9.

    Google Scholar 

  • Biémont, C., 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Google Scholar 

  • Biessman, H., J. M. Mason, K. Ferry, M. d'Hulst, K. Valgeirsdottir, K. L. Traverse & M. L. Pardue, 1990. Addition of telomere-associated HeT DNA sequences ‘heals’ broken chromosome ends in Drosophila. Cell 61: 663–673.

    Google Scholar 

  • Bregliano, J.-C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants. In Mobile Genetic Elements, Shapiro, J. A. Ed., Academic Press London: 363–410.

    Google Scholar 

  • Bucheton, A., 1979. Non-mendelian female sterility in Drosophila melanogaster: influence of ageing and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93: 131–142.

    Google Scholar 

  • Bucheton, A., 1990. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends in Genetics 6: 16–21.

    Google Scholar 

  • Bucheton, A. & J.-C. Bregliano, 1982. The I-R system of hybrid dysgenesis in Drosophila melanogaster: heredity of the reactive condition. Biol. Cell. 46: 123–132.

    Google Scholar 

  • Bucheton, A. & G. Picard, 1978. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40: 207–223.

    Google Scholar 

  • Bucheton, A., J.-M. Lavige, G. Picard & P. L'Héritier, 1976. Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36: 305–314.

    Google Scholar 

  • Bucheton, A., R. Paro, H. M. Sang, A. Pélisson & D. J. Finnegan, 1984. The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning and properties of the I factor. Cell 38: 153–163.

    Google Scholar 

  • Bucheton, A., M. Simonelig, C. Vaury & M. Crozatier, 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in Drosophila melanogaster occur in other Drosophila species. Nature 322: 650–652.

    Google Scholar 

  • Burke, W. D., C. C. Calalang & T. H. Eickbush, 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7: 2221–2230.

    Google Scholar 

  • Busseau, I., A. Pélisson & A. Bucheton, 1989a. I elements of Drosophila melanogaster generate specific chromosomal rearrangements during transposition. Mol. Gen. Genet. 218: 222–228.

    Google Scholar 

  • Busseau, I., A. Pélisson & A. Bucheton, 1989b. Characterization of 5′ truncated copies of the I factor in Drosophila melanogaster. Nucl. Acids. Res. 17: 6939–6945.

    Google Scholar 

  • Caccone, A., G. D. Amato & J. R. Powell, 1988. Rates and patterns of scn DNA and mt DNA divergence within the Drosophila melanogaster subgroup. Genetics 118: 671–683.

    Google Scholar 

  • Cariou, M. L., 1987. Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet. Res. 50: 181–185.

    Google Scholar 

  • Carroll, D., D. S. Knutzon & J. E. Garret, 1989. Transposable elements in Xenopus species, pp. 567–574 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Chaboissier, M.-C., I. Busseau, J. Prosser, D. J. Finnegan & A. Bucheton, 1990. Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO J. 9: 3557–3563.

    Google Scholar 

  • Crozatier, M., C. Vaury, I. Busseau, A. Pélisson & A. Bucheton, 1988. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis in Drosophila melanogaster. Nucl. Acids Res. 16: 9199–9213.

    Google Scholar 

  • Daniels, S. B. & L. D. Strausbaugh, 1986. The distribution of P element sequencies in Drosophila: the willistoni and saltans species group. J. Mol. Evol. 23: 138–148.

    Google Scholar 

  • Daniels, S. B., K. R. Peterson, L. D. Strausbaugh, M. G. Kidwell & A. Chovnick, 1990. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124: 339–355.

    Google Scholar 

  • David, J. R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. Trends in Genetics 4: 106–111.

    Google Scholar 

  • Di Nocera, P. P. & G. Casari, 1987. Related polypeptides are encoded by Drosophila F elements, I factors and mammalian LI sequences. PNAS 84: 5843–5847.

    Google Scholar 

  • Dowset, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Google Scholar 

  • Dowset, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. PNAS 79: 4570–4574.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Evans, J. P. & R. D. Palmiter, 1991. Retrotransposition of a mouse L1 element. PNAS 88: 8792–8795.

    Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Gardner, M. B., C. A. Kozak & S. J. O'Brien, 1991. The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends in Genetics 7: 22–27.

    Google Scholar 

  • Ginzburg, L. R., P. M. Bingham & S. Yoo, 1984. On the theory of speciation induced by transposable elements. Genetics 107: 331–341.

    Google Scholar 

  • Houck, M. A., J. B. Clark, K. R. Peterson & M. G. Kidwell, 1991. Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253: 1125–1129.

    Google Scholar 

  • Hutchison III, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome, pp. 593–617 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Jakubezak, J. L., Y. Xiong & T. H. Eickbush, 1990. Type I (R1) and Type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J. Mol. Biol. 212: 37–52.

    Google Scholar 

  • Jeffs, P. & M. Ashburner, 1991. Processed pseudogenes in Drosophila. Proc. R. Soc. London B 244: 151–159.

    Google Scholar 

  • Jensen, S. & T. Heidmann, 1991. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10: 1927–1937.

    Google Scholar 

  • Kazazian, H. H., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips & S. E. Antonarakis, 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166.

    Google Scholar 

  • Kidwell, M. G., 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. PNAS 80: 1655–1659.

    Google Scholar 

  • Kimmel, B. E., O. K. Ole-Moiyoi & J. R. Young, 1987. Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end has homology with mammalian LINEs. Mol. Cell. Biol. 7: 1465–1475.

    Google Scholar 

  • Kinsey, J. A. & J. Helber, 1989. Isolation of a transposable element from Neurospora crassa. PNAS 86: 1929–1933.

    Google Scholar 

  • Lachaise, D., M. L. Cariou, J. R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.

    Google Scholar 

  • Lansman, R. A., R. O. Shade, T. A. Grigliatti & H. W. Brock, 1987. Evolution of P transposable elements: sequences of Drosophila nebulosa P elements. PNAS 84: 6491–6495.

    Google Scholar 

  • Leigh Brown, A. J. & J. E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.

    Google Scholar 

  • McDonald, J. H. & M. Kreitman, 1991. Adaptative protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Google Scholar 

  • Maeda, N. & O. Smithies, 1986. The evolution of multigene families: human haptoglobin genes. Ann. Rev. Genet. 20: 81–108.

    Google Scholar 

  • Martin, G., D. Wiernasz & P. Schedl, 1983. Evolution of Drosophila repetitive-dispersed DNA. J. Mol. Evol. 19: 203–213.

    Google Scholar 

  • Miklos, G. L. G., M. T. Yamamoto, J. Davies & V. Pirrotta, 1988. Microclonong reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. PNAS 85: 2051–2055.

    Google Scholar 

  • Mizrokhi, L. J., S. G. Georgieva & Y. V. Ilyin, 1988. Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcibed from the internal promoter by RNA polymerase II. Cell 54: 685–691.

    Google Scholar 

  • Montgomery, E., B. Charlesworth & C. H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Google Scholar 

  • Morse, B., P. G. Rotherg, V. J. South, J. M. Spandorfer & S. M. Astrin, 1988. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature 333: 87–90.

    Google Scholar 

  • Mount, S. M., M. M. Green & G. M. Rubin, 1988. Partial revertants of the transposable element-associated suppressible allele white-apricot in Drosophila melanogaster: structures and responsiveness to genetic modifiers. Genetics 118: 221–234.

    Google Scholar 

  • Murphy, N. B., A. Pays, P. Tebabi, H. Coquelet, M. Guyaux, M. Steinert & E. Pays, 1987. Trypanosoma brucei repeated element with unusual structural and transcriptional properties. J. Mol. Biol. 195: 855–871.

    Google Scholar 

  • Neufeld, T. P., R. W. Carthew & G. M. Rubin, 1991. Evolution of gene position: chromosal arrangement and sequence comparison of the Drosophila melanogaster and Drosophila virilis sina and Rh4 genes. PNAS 88: 10203–10207.

    Google Scholar 

  • Pascual, L. & G. Periquet, 1991. Distribution of hobo elements in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 8: 282–296.

    Google Scholar 

  • Peifer, M. & W. Bender, 1986. The anterobithorax and bithorax mutations of the bithorax complex. EMBO J. 5: 2293–2303.

    Google Scholar 

  • Pélisson, A., 1981. The I-R system of hybrid dysgenesis in Drosophila melanogaster: are I factor insertions responsible for the mutator effect of the I-R interaction. Mol. Gen. Genet. 183: 123–129.

    Google Scholar 

  • Pélisson, A. & J. C. Bregliano, 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306–313.

    Google Scholar 

  • Pélisson, A., D. J. Finnegan & A. Bucheton, 1991. Direct evidence for retrotransposition of the I factor, a LINE element of Drosophila melanogaster. PNAS 88: 4907–4910.

    Google Scholar 

  • Periquet, G., M. H. Hamelin, Y. Bigot & A. Lepissier, 1989. Geographical and historical patterns of distribution of hobo elements in Drosophila melanogaster populations. J. Mol. Evol. 2: 223–229.

    Google Scholar 

  • Picard, G., 1976. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of the I factor. Genetics 83: 107–123.

    Google Scholar 

  • Picard, G., 1978. Non mendilian female sterility in Drosophila melanogaster, further data on chromosomal contamination. Mol. Gen. Genet. 164: 235–247.

    Google Scholar 

  • Picard, G., J. C. Bregliano, A. Bucheton, J. M. Lavige, A Pélisson & M. G. Kidwell, 1978. Non-mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 32: 275–287.

    Google Scholar 

  • Priimägi, A. F., L. J. Mizrokhi & Y. V. Ilyn, 1988. The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. Gene 70: 253–262.

    Google Scholar 

  • Pritchard, M. A., J.-M. Dura, A. Pélisson, A. Bucheton & D. J. Finnegan, 1988. A cloned I factor is fully functional in Drosophila melanogaster; a possible mechanism for transposition. Mol. Gen. Genet. 214: 533–540.

    Google Scholar 

  • Proust, J. and C. Prudhommeau, 1982. Hybrid dysgenesis in Drosophila melanogaster. I. Further evidence for and characterization of the mutator effect of the inducer-reactive interaction. Mutation Research 95: 225–235.

    Google Scholar 

  • Prudhommeau, C. & J. Proust, 1990. I-R hybrid dysgenesis in Drosophila melanogaster: nature and site specificity of induced recessive lethals. Mutation Research 230: 135–157.

    Google Scholar 

  • Ricchetti, M. & H. Buc, 1990. Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J. 9: 1583–1593.

    Google Scholar 

  • Samson, M. L. & M. Wegnez, 1984. The 5S ribosomal genes in the Drosophila melanogaster species subgroup. Nucleotide sequence of a 5S unit from Drosophila simulans and Drosophila teissier. Nuc. Acids Res. 12: 1003–1014.

    Google Scholar 

  • Sang, H. M., A. Pélisson, A. Bucheton & D. J. Finnegan, 1984. Molecular lesions associated with white gene mutations induced by I-R hybrid dysgenesis in Drosophila melanogaster. EMBO J. 3: 3079–3085.

    Google Scholar 

  • Schneuwly, S., A. Kuroiwa & W. J. Gehring, 1987. Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J. 6: 201–206.

    Google Scholar 

  • Schwarz-Sommer, Z., L. Leclercq, E. Gobel & H. Saedler, 1987. Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J. 6: 3873–3880.

    Google Scholar 

  • Simonelig, M., 1989. Evolution des éléments transposables I et P impliqués dans les phénoménes de dysgénésie hybride chez Drosophila melanogaster. PhD Thesis, University of Paris-Sud (Orsay).

  • Simonelig, M., C. Bazin, A. Pélisson & A. Bucheton, 1988. Transposable and non transposable elements similar to the I factor involved in inducer-reactive (I-R) hybrid dysgenesis in Drosophila melanogaster coexist in various Drosophila species. PNAS 85: 1141–1145.

    Google Scholar 

  • Skowronski, J. & M. F. Singer, 1985. Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. PNAS 82: 6050–6054.

    Google Scholar 

  • Skowronski, J., T. G. Fanning & M. F. Singer, 1988. Unit-length Line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8: 1385–1397.

    Google Scholar 

  • Stacey, S. N., R. A. Lansman, H. W. Brock & T. A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 6: 522–534.

    Google Scholar 

  • Valgeirsdottir, K., K. L. Traverse & M. L. Pardue, 1990. HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. PNAS 87: 7998–8002.

    Google Scholar 

  • Vaury, C., P. Bucheton & A. Pélisson, 1989. The β-heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215–224.

    Google Scholar 

  • Vaury, C., P. Abad, A. Pélisson, A. Lenoir & A. Bucheton, 1990. Molecular characteristics of the heterochromatic I elements from a reactive strain of Drosophila melanogaster. J. Mol. Evol. 31: 424–431.

    Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1988. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal repeat retrotransposons. Mol. Cell. Biol. 8: 114–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucheton, A., Vaury, C., Chaboissier, M.C. et al. I elements and the Drosophila genome. Genetica 86, 175–190 (1992). https://doi.org/10.1007/BF00133719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133719

Keywords

Navigation