Skip to main content
Log in

Copper corrosion at various pH values with and without the inhibitor

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibitory action of BTAH on copper was investigated in 1 M sodium acetate solution in the pH range 4–10, using cyclic voltammetry and impedance spectroscopy. Cyclic voltammetry showed that the rearrangement of the surface oxide layer in the presence of BTAH is very fast in slightly alkaline solutions, while it is time- and concentration-dependent in neutral and slightly acidic solutions. The adsorption behaviour of BTAH on the electrode surface at c(BTAH) ≤ 0.5 mM followed a Flory–Huggins adsorption isotherm with ΔG ranging from −30.0 to −39.0 kJ mol−1, depending on the pH. Impedance spectra were characterized by two time constants relating to the charge transfer and transport of copper ions through the oxide layer, the latter being the rate determining step. These enabled the determination of important properties of the adsorbed layer and the passivated film. The results indicate that the surface layer is of dielectric nature, and its protection increases with increasing inhibitor concentration and solution pH. The finite diffusion impedance was analysed using a diffusion factor B, and the values of the diffusion coefficient and concentration of copper species in the film were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’ (Pergamon Press, New York, 1966).

    Google Scholar 

  2. Y. Feng, K.-S. Siow, W.-K. Teo, K.-L. Tan and A.-K. Hseih, Corrosion 53 (1997) 389.

    Google Scholar 

  3. V. Brusic, M.A. Frisch, B.N. Eldridge, F.P. Novak, F.B. Kaufman, B.M. Rush and G.S. Frankel, J. Electrochem. Soc. 138 (1991) 2253.

    Google Scholar 

  4. F. Di Quarto, S. Piazza and C. Sunseri, Electrochim. Acta 30 (1985) 315.

    Google Scholar 

  5. J.-H. Chen, Z.-C. Lin, S. Chen, L.-H. Nie and S.-Z. Yao, Electrochim. Acta 43 (1998) 265.

    Google Scholar 

  6. J.B. Cotton and I.R. Scholes, Br. Corros. J. 2 (1967) 1.

    Google Scholar 

  7. G.W. Poling, Corros. Sci. 10 (1970) 359.

    Google Scholar 

  8. T. Notoya and G.W. Poling, Corrosion 32 (1976) 216.

    Google Scholar 

  9. D. Tromans, J. Electrochem. Soc. 145 (1998) L42.

    Google Scholar 

  10. F. Mansfeld and T. Smith, Corrosion 29 (1973) 105.

    Google Scholar 

  11. M.R. Vogt, W. Polewsa, O.M. Magnussen and R.J. Behm, J. Electrochem. Soc. 144 (1997) L113.

    Google Scholar 

  12. M. Metikos-Hukovic, R. Babic and A. Marinovic, J. Electrochem. Soc. 145 (1998) 4045.

    Google Scholar 

  13. R. Babic, M. Metikos-Hukovic and M. Loncar, Electrochim. Acta 44 (1999) 2413.

    Google Scholar 

  14. D. Tromans and R.-H. Sun, J. Electrochem. Soc. 138 (1991) 3235.

    Google Scholar 

  15. A.D. Modestov, G.D. Zhou, Y.P. Wu, T. Notoya and D.P. Schweinsberg, Corros. Sci. 36 (1994) 1931.

    Google Scholar 

  16. M. Seo, X.C. Jiang and N. Sato, Werkstff. u. Korr. 39 (1988) 583.

    Google Scholar 

  17. H.Y.H. Chan, C.G. Takoudis and M.J. Weaver, J. Phys. Chem. B 103 (1999) 357.

    Google Scholar 

  18. S.T. Mayer and R.H. Muller, J. Electrochem. Soc. 139 (1992) 426.

    Google Scholar 

  19. W. Kautek and J.G. Gordon II, J. Electrochem. Soc. 137 (1990) 2672.

    Google Scholar 

  20. H.D. Speckmann, M.M. Lohrengel, J.W. Schultze and H.H. Strehblow, Ber. Bunsenges. Phys. Chem. 89 (1985) 392.

    Google Scholar 

  21. L.D. Burke, M.J.G. Ahern and T.G. Ryan, J. Electrochem. Soc. 137 (1990) 553.

    Google Scholar 

  22. C.-H. Pyun, S.-M. Park, J. Electrochem. Soc. 133 (1986) 2024.

    Google Scholar 

  23. A. Aruchamy and Fujishima, J. Electroanal. Chem. 266 (1989) 397.

    Google Scholar 

  24. S.M. A.-E. Haleem and B.G. Ateya, J. Electroanal. Chem. 117 (1981) 309.

    Google Scholar 

  25. E.M.M. Sutter, C. Fiaud and D. Lincot, Electrochim. Acta 38 (1993) 1471.

    Google Scholar 

  26. F. Ammeloot, C. Fiaud and E.M.M. Sutter, Electrochim. Acta 42 (1997) 3565.

    Google Scholar 

  27. D.D. Perrin, ‘Dissociation Constants of Organic Bases in Aqueous Solutions’ (Butterworths, London, 1965).

    Google Scholar 

  28. P.G. Fox, G. Lewis and P.J. Boden, Corros. Sci. 19 (1979) 457.

    Google Scholar 

  29. K. Juttner, J.W. Lorentz, M.W. Kending and F. Mansfeld, J. Electrochem. Soc. 135 (1988) 332.

    Google Scholar 

  30. U. Rammelt and G. Reinhard, Electrochim. Acta 35 (1990) 1045.

    Google Scholar 

  31. B.A. Boukamp, ‘Equivalent Circuit’, International Report CT 89/214/128, University of Twente.

  32. K. Jutner, Electrochim. Acta 35 (1990) 1501.

    Google Scholar 

  33. E. Kalman, B. Varhegyi, I. Bako, I. Felhosi, F.H. Karman and A. Shaban, J. Electrochem. Soc. 141 (1994) 3357.

    Google Scholar 

  34. F. El-Taib Heakal, S. Haruyama, Corros. Sci. 20 (1980) 887.

    Google Scholar 

  35. J.L. Dawson and D.G. John, Electroanal. Chem. 110 (1980) 37.

    Google Scholar 

  36. M. Bojinov and D. Pavlov, J. Electroanal. Chem. 315 (1991) 201.

    Google Scholar 

  37. L.M. Gassa, H.T. Mishima, B.A. Lopez de Mishima and J.R. Vilche, Electrochim. Acta 42 (1997) 1717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metikoš-Huković, M., Babić, R. & Paić, I. Copper corrosion at various pH values with and without the inhibitor. Journal of Applied Electrochemistry 30, 617–624 (2000). https://doi.org/10.1023/A:1003956102631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003956102631

Navigation