Skip to main content
Log in

Genetic divergence and larval dispersal in two spider crabs (Crustacea: Decapoda)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spider crabs Inachus dorsettensis (Pennant) and Hyas coarctatus Leach are widespread in subtidal areas of muddy sand or gravel around western Europe. Both species have a life cycle with an obligatory planktonic larval phase of several weeks, which might be expected to cause widespread larval dispersal and consequent genetic homogeneity over considerable distances. However, earlier work on both taxa has indicated differences in growth pattern between populations separated by tens of kilometres. This study was undertaken to determine whether these differences were purely environmental or whether, despite the short distances involved, differences may have a genetic basis. A study of gene frequencies, as indicated by allozymes in samples of adults collected off the Isle of Man (northern Irish Sea), indicates significant genetic differentiation between populations over a geographical distance of only about 40 km in both Inachus dorsettensis (θ = 0.086 ± 0.048) and Hyas coarctatus (θ = 0.023 ± 0.017). Variability measures differed between species, showing I. dorsettensis to have a mean number of alleles per locus of 2.5–2.6 and a range of gene diversity of 0.216–0.241, while H. coarctatus showed lower values of mean number of alleles (1.9–2.0) and a range of gene diversity from 0.122 to 0.124. Given the high expected larval mobility of the two species the results are most surprising. Possible explanations are discussed in relation to population discontinuities and patterns of larval drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. A., 1967. The fauna of the Clyde Sea area Crustacea: Euphausiacea and Decapoda with an illustrated key to the British species. Scott. mar. biol. Ass., Millport, Scotland.

    Google Scholar 

  • Anger, K., 1984. Development and growth in larval and juvenile Hyas coarctatus (Decapoda, Majidae) reared in the laboratory. Mar. Ecol. Progr. Ser. 19: 115–123.

    Google Scholar 

  • Beaumont, W. I., 1900. The fauna and flora of Valencia Harbour on the west coast of Ireland. II. The benthos (dredging and shore collecting). VIII. Report on the results of dredging and shore collecting. Proc. r. ir. Acad. 5: 754–798.

    Google Scholar 

  • Bruce, J. R., J. S. Colman & N. S. Jones, 1963. Marine fauna of the Isle of Man. University of Liverpool Press, Liverpool.

    Google Scholar 

  • Bryant, A. D. & R. G. Hartnoll, 1995. Reproductive investment in two spider crabs with different breeding strategies. J. exp. mar. Biol. Ecol. 188: 261–275.

    Google Scholar 

  • Bulnheim, H. P. & A. Scholl, 1986. Genetic differentiation between populations of Talitrus saltator and Talorchestia deshayesii (Crustacea: Amphipoda) from coastal areas of the north-western European continent. Mar. Biol. 92: 525–536.

    Google Scholar 

  • Christiansen, M. E., 1969. Marine Invertebrates of Scandinavia, 2. Crustacea Decapoda Brachyura. Universitetsfarlaget, Oslo.

    Google Scholar 

  • Conceição, M., 1995. Genetic investigations of talitrid amphipods. Unpublished Ph.D. thesis, University of Liverpool, Port Erin, Isle of Man.

    Google Scholar 

  • Crane, J., 1940. Eastern Pacific expeditions of the New York Zoological Society. XVIII. On the post embryonic development of brachyuran crabs of the genus Ocypode. Zoologica 25: 65–82.

    Google Scholar 

  • Flowerdew, M. W., 1984. Electrophoretic comparison of the antipodean cirripede Elminius modestus with immigrant European populations. J. mar. biol. Ass. U.K. 64: 625–635.

    Google Scholar 

  • Grahame, J. & G. M. Branch, 1985. Reproductive patterns of marine invertebrates. Oceanogr. mar. Biol. ann. Rev. 23: 373–398.

    Google Scholar 

  • Goudet, J., 1995. FSTAT(Version 1.2): a computer program to calculate F-Statistics. J. Hered. 86: 485–486.

    Google Scholar 

  • Harris, H. & D. A. Hopkinson, 1976. Handbook of enzyme electrophoresis in human genetics. North Holland, Amsterdam.

    Google Scholar 

  • Hartley, J. P. & J. D. D. Bishop, 1986. The macrobenthos of the Beatrice oilfield, Moray Firth, Scotland. Proc. r. Soc. Edinburgh 91B: 221–245.

    Google Scholar 

  • Hartnoll, R. G., 1963. The biology of Manx spider crabs. Proc. zool. Soc. Lond. 14: 423–496.

    Google Scholar 

  • Hartnoll, R. G., 1992. Megalopae and early postlarval stages of East African Percnon (Decapoda: Brachyura: Grapsidae). J. Zool. 228: 51–67.

    Google Scholar 

  • Hartnoll, R. G., A. D. Bryant & P. Gould, 1993. Size distribution in spider crab population spatial and temporal variation. J. crust. Biol. 13: 647–655.

    Google Scholar 

  • Hedgecock, D., 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564.

    Google Scholar 

  • Hedgecock, D., M. L. Tracey & K. Nelson, 1982. Genetics. In Abele, L. G. (ed.), Biology of Crustacea, 2. Embryology, Morphology and Genetics. Academic Press, New York: 283–403.

    Google Scholar 

  • Ingle, R. W., 1983. Shallow water crabs: Keys and notes for the identification of the species. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jablonski, D. & R. A. Lutz, 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58: 21–89.

    Google Scholar 

  • Jones, N. S., 1951. The bottom fauna off the south of the Isle of Man. J. anim. Ecol. 20: 132–144.

    Google Scholar 

  • Jones, N. S., 1956. The fauna and biomass of a muddy sand deposit off Port Erin. J. anim. Ecol. 25: 217–252.

    Google Scholar 

  • Knowlton, N., 1993. Sibling species in the sea. Ann. Rev. Ecol. Syst. 24: 189–216.

    Google Scholar 

  • Knowlton, N. & B. D. Keller, 1986. Larvae which fall far short of their potential: highly localized recruitment in an alpheid shrimp with extended larval development. Bull. mar. Sci. 39: 213–223.

    Google Scholar 

  • Lebour, M. V., 1927. Studies of the Plymouth Brachyura. I. The rearing of crabs in captivity, with a description of the larval stages of Inachus dorsettensis, Macropodia longirostris and Maia squinado. J. mar. biol. Ass. U.K. 14: 795–280.

    Google Scholar 

  • Lewis, R. I. & J. P. Thorpe, 1994a. Temporal stability of gene frequencies within genetically heterogeneous populations of the queen scallop Aequipecten (Chlamys) opercularis. Mar. Biol. 121: 117–126.

    Google Scholar 

  • Lewis, R. I. & J. P. Thorpe, 1994b. Are queen scallops, Aequipecten (Chlamys) opercularis (L.), self recruiting? Can. tech. Rep. Fish. aquat. Sci. 214–221.

  • Macleod, J. A. A., J. P. Thorpe & N. A. Duggan, 1985. A biochemical genetic study of population structure in queen scallop (Chlamys opercularis) stocks in the Northern Irish Sea. Mar. Biol. 87: 77–82.

    Google Scholar 

  • Maynard Smith, J., 1989. Evolutionary Genetics. Oxford University Press, Oxford.

    Google Scholar 

  • Mulley, J. C. & B. D. H. Latter, 1981. Geographical differentiation of tropical Australian penaeid prawn populations. Aust. J. mar. Freshwat. Res. 32: 897–909.

    Google Scholar 

  • Murphy, R. W., J. W. Sites, D. G. Buth & C. H. Haufler, 1990. Protein I: Isozyme Electrophoresis. In Hillis, D. M. & C. Moritz (eds), Molecular Systematics. Sinauer Associates, Inc. Publishers, Massachusetts: 45–126.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Pannacciulli, F. G., J. D. D. Bishop & S. J. Hawkins, 1997. Genetic structure of populations of two species of Chthamalus (Crustacea: Cirripedia) in the NE Atlantic andMediterranean. Mar. Biol. 128: 73–82.

    Google Scholar 

  • Pingree, R. D. & D. K. Griffiths, 1978. Tidal fronts on the shelf seas around the British Isles. J. geophys. Res. 83: 4615–4622.

    Google Scholar 

  • Poulik, M. D., 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477–1479.

    Google Scholar 

  • Ramster, J. W. & H. W. Hill, 1969. Current systems in the northern Irish Sea. Nature 224: 59–61.

    Google Scholar 

  • Redfield, J. A. & J. P. Salini, 1980. Techniques of starch gel electrophoresis of penaeid prawn enzymes (Penaeus spp. and Metapenaeus spp.). CSIRO Aust. Div. Fish. Oceanogr. Rep. 116: 1–19.

    Google Scholar 

  • Rice, W. R., 1989. Analysing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Siciliano, M. J. & C. R. Shaw, 1976. Separation and visualization of enzymes on gels. In Smith, I. (ed.), Chromatographic and Electrophoretic Techniques, 2. Heineman, London: 185–209.

    Google Scholar 

  • Silberman, J. D. & P. J. Walsh, 1994. Population genetics of the spiny lobster Panulirus argus. Bull. mar. Sci. 54: 1084.

    Google Scholar 

  • Simpson, J. H., 1971. Density stratification and microstructure in the western Irish Sea. Deep Sea Res. 18: 309–319.

    Google Scholar 

  • Sinel, J., 1907. A contribution to our knowledge of the Crustacea of the Channel Islands. Rep. Trans. Guernsey Soc. nat. Sci. 5: 212–215.

    Google Scholar 

  • Slatkin, M., 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Google Scholar 

  • Slatkin, M., 1993. Isolation by distance in equilibrium and nonequilibriium populations. Evolution 47: 264–279.

    Google Scholar 

  • Strathmann, R. R., 1980. Why do larvae swim so long? Paleobiology 6: 373–376.

    Google Scholar 

  • Strathmann, R. R., 1985. Feeding and nonfeeding larval development and life history evolution in marine invertebrates. Ann. Rev. Ecol. Syst. 16: 339–361.

    Google Scholar 

  • Swofford, D. L. & R. K. Selander, 1981. BIOSYS-1–A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.

    Google Scholar 

  • Thorpe, J. P., 1982. The molecular clock hypothesis: Biochemical evolution, genetic differentiation and systematics. Ann. Rev. Ecol. Syst. 13: 139–168.

    Google Scholar 

  • Thorpe, J. P. & A. M. Solé-Cava, 1994. The use of enzyme electrophoresis in invertebrate systematics. Zool. Scr. 23: 3–18.

    Google Scholar 

  • Thurston, M. H., 1970. The marine flora and fauna of the Isles of Scilly. Crustacea, Eucarida. J. nat. Hist. 4: 239–248.

    Google Scholar 

  • Todd, C. D., 1985. Reproductive strategies of north temperate rocky shore invertebrates. In Moore, P. G. & R. Seed (eds), The Ecology of Rocky Coasts: Essays Presented to J. R. Lewis. Hodder & Stoughton, London: 203–219.

    Google Scholar 

  • Todd, C. D., J. N. Havenhand & J. P. Thorpe, 1988. Genetic differentiation, pelagic larval transport and gene flow between populations of the intertidal marine mollusc Adalaria proxima (Alder and Hancock). Funct. Ecol. 2: 441–451.

    Google Scholar 

  • Todd, C. D., W. J. Lambert & J. P. Thorpe, 1993. The genetic structure of intertidal population of two species of mollusc on the scottish west coast: some biogeographic considerations and an assessment of realized larval dispersal. In Baxter, J. M. & M. B. Usher (eds), The Islands of Scotland: A Living Marine Heritage. Scottish Natural Heritage, Edinburgh: 67–88.

    Google Scholar 

  • Tracey, M. L., K. Nelson, D. Hedgecock, R. A. Schleser & M. L. Pressick, 1975. Biochemical genetics of lobsters: genetic variation and the structure of American lobster (Homarus americanus) populations. J. Fish. Res. Bd Can. 32: 2091–2101.

    Google Scholar 

  • Weber, L. I., M. B. Conceição, M. L. Rufino & J. A. Levy, 1993. Population genetics of the shrimp Artemesia longinaris (Crustacea: Peneidae) on the southwest Atlantic coast. Comp. Biochem. Physiol. 106B: 1015–1020.

    Google Scholar 

  • Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Whittington, M. W., 1993. Scallop aquaculture in Manx waters: spat collection and the role of predation in seabed cultivation. Unpublished Ph.D. thesis, University of Liverpool.

  • Wright, S., 1978. Evolution and the genetics of populations, 4. Variability within and among natural populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Workman, P. L. & J. D. Niswander, 1970. Population studies on Southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am. J. human Gen. 22: 24–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, L.I., Hartnoll, R.G. & Thorpe, J.P. Genetic divergence and larval dispersal in two spider crabs (Crustacea: Decapoda). Hydrobiologia 420, 211–219 (2000). https://doi.org/10.1023/A:1003905115208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003905115208

Navigation