Skip to main content
Log in

Genetic structure in native and non-native populations of the direct-developing gastropod Crepidula convexa

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In many marine invertebrate species, larval development plays an important role in population connectivity and gene flow: species with direct benthic development generally show more genetic structure than those with planktonic development. We used nuclear markers (microsatellites) to determine population genetic structure of the direct-developing snail Crepidula convexa (Gastropoda: Calyptraeidae) in seven populations with 15–85 individuals each within its native range of the northwest Atlantic and compared it to Crepidula fornicata, a congener with planktonic development. Our results are consistent with general expectations and previous work in these species with other markers: C. convexa had greater population structure and even at a regional scale shows significant isolation-by-distance, in contrast to C. fornicata. We also genotyped a single population of C. convexa introduced to the northeastern Pacific to investigate the prediction of reduced genetic diversity following introduction (founder effect). We did not find a reduction in genetic diversity, suggesting that this non-native population may be characterized by multiple introductions. This pattern is consistent with many other introduced populations of marine invertebrates, including C. fornicata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addison JA, Hart MW (2005) Spawning, copulation, and inbreeding coefficients in marine invertebrates. Biol Lett 1:450–453

    Article  CAS  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Ament AS (1978) Geographic variation in relation to life history in three species of the marine gastropod genus Crepidula. Dissertation, University of Pennsylvania

  • Ament AS (1979) Geographic variation in relation to life history in three species of the marine gastropod genus Crepidula: growth rates of newly hatched larvae and juveniles. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 61–76

    Google Scholar 

  • Arndt A, Smith MJ (2002) Genetic diversity and population structure in two species of sea cucumber: differing patterns according to mode of development. Mol Ecol 7:1053–1064

    Article  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Bierne N, Welch J, Loire E, Bonhomme F, David P (2011) The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol 20:2044–2072

    Article  Google Scholar 

  • Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe: current state and consequences. Sci Mar 61(S2):109–118

    Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. P R Soc B 275:1803–1809

    Article  Google Scholar 

  • Carlton JT (1992) Introduced marine and estuarine mollusks of North America: an end-of-the-20th-century perspective. J Shellfish Res 11:489–505

    Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262

    Article  CAS  Google Scholar 

  • Collin R (2002) Another last word on Crepidula convexa with a description of C. ustulatulina n. sp. (Gastropoda: Calyptraeidae) from the Gulf of Mexico and southern Florida. Bull Mar Sci 70:177–184

    Google Scholar 

  • Collin R (2003) Worldwide patterns in mode of development in calyptraeid gastropods. Mar Ecol-Prog Ser 247:103–122

    Article  Google Scholar 

  • Collin R, Wonham MJ, Barr KR (2006) Crepidula convexa Say, 1822 (Caenogastropoda: Calyptraeidae) in Washington State, U.S.A. Am Malacol Bull 21:113–116

    Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • Daguin-Thiebaut C, Le Cam S, Viard F (2009) Isolation of 11 microsatellite markers in Crepidula convexa (Gastropoda, Calyptraeideae) for parentage analyses. Mol Ecol Resour 9:917–920

    Article  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    Google Scholar 

  • Dupont L, Jollivet D, Viard F (2003) High genetic diversity and ephemeral drift effects in a successful introduced mollusc (Crepidula fornicata: Gastropoda). Mar Ecol-Prog Ser 253:183–195

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from. http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. B Mar Sci 87:971–1002

    Article  Google Scholar 

  • Hedrick PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175

    Article  Google Scholar 

  • Hendler G, Franz DR (1971) Population dynamics and life history of Crepidula convexa Say (Gastropoda: Prosobranchia) in Delaware Bay. Biol Bull 141:514–526

    Article  Google Scholar 

  • Henry JJ, Collin R, Perry KJ (2010) The slipper snail, Crepidula: an emerging lophotrochozoan model system. Biol Bull 218:211–229

    Google Scholar 

  • Herborg L-M, Weetman D, van Oosterhout C, Hänfling B (2007) Genetic population structure and contemporary dispersal pattern of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Mol Ecol 16:231–242

    Article  CAS  Google Scholar 

  • Hoagland KE (1977) Systematic review of fossil and recent Crepidula. Malacologia 16:363–420

    Google Scholar 

  • Hoagland KE (1984) Use of molecular genetics to distinguish species of the gastropod genus Crepidula (Prosobranchia: Calyptraeidae). Malacologia 25:607–628

    Google Scholar 

  • Hoagland KE (1985) Genetic relationships between one British and several North American populations of Crepidula fornicata based on allozyme studies (Gastropoda: Calyptraeidae). J Molluscan Stud 51:177–182

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  Google Scholar 

  • Jost L (2008) G st and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  Google Scholar 

  • Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol Syst 39:321–342

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS One 5:e8594

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020

    Article  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    Article  CAS  Google Scholar 

  • Le Cam S, Riquet F, Pechenik JA, Viard F (2014) Paternity and gregariousness in the sex-changing sessile marine gastropod Crepidula convexa: comparison with other protandrous Crepidula species. J Hered 105:397–406

    Article  Google Scholar 

  • Lee HJ, Boulding EG (2009) Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol 18:2165–2184

    Article  CAS  Google Scholar 

  • López-Duarte PC, Carson HS, Cook GS, Fodrie FJ, Becker BJ, DiBacco C, Levin LA (2012) What controls connectivity? An empirical, multi-species approach. Integr Comp Biol 52:511–524

    Article  Google Scholar 

  • Marko PB, Hart MW (2011) The complex analytical landscape of gene flow inference. Trends Ecol Evol 26:448–456

    Article  Google Scholar 

  • McGlashan D, Ponniah M, Cassey P, Viard F (2008) Clarifying marine invasions with molecular markers: an illustration based on mtDNA from mistaken calyptraeid gastropod identifications. Biol Invasions 10:51–57

    Article  Google Scholar 

  • McMillan WO, Raff RA, Palumbi SR (1992) Population genetic consequences of developmental evolution in sea urchins (Genus Heliocidaris). Evolution 46:1299–1312

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: Fst and related measures. Mol Ecol Resour 11:5–18

    Article  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1973) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer Associates Inc, Sunderland, pp 201–228

    Google Scholar 

  • Olson RR, McPherson R (1987) Potential vs. realized larval dispersal: fish predation on larvae of the ascidian Lissoclinum patella (Gottschaldt). J Exp Mar Biol Ecol 110:245–256

    Article  Google Scholar 

  • Ordóñez V, Pascual M, Ruis M, Turon X (2013) Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar Biol 160:1645–1660

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  Google Scholar 

  • Riquet F, Daguin-Thiébaut C, Ballenghien M, Bierne N, Viard F (2013) Contrasting patterns of genome-wide polymorphism in the native and invasive range of the marine mollusc Crepidula fornicata. Mol Ecol 22:1003–1018

    Article  CAS  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol-Prog Ser 436:291–305

    Article  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385

    Google Scholar 

  • Siegel DA, Kinlan BP, Gaylord B, Gaines SD (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol-Prog Ser 260:83–96

    Article  Google Scholar 

  • Simon-Bouhet B, Garcia-Meunier P, Viard F (2006) Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol Ecol 15:1699–1711

    Article  CAS  Google Scholar 

  • Strathmann MF, Strathmann RR (2007) An extraordinarily long larval duration of 4.5 years from hatching to metamorphosis for teleplanic veligers of Fusitriton oregonensis. Biol Bull 213:153–159

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  • Thieltges DW, Strasser M, Reise K (2006) How bad are invaders in coastal waters? The case of the American slipper limpet Crepidula fornicata in western Europe. Biol Invasions 8:1673–1680

    Article  Google Scholar 

  • Townsend CH (1895) The transplanting of eastern oysters to Willapa Bay, Washington, with notes on the native oyster industry. In: United States Commision of Fish and Fisheries. Part XXI. Report of the commissioner for the year ending June 30, 1895, pp 193–202

  • Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537

    Article  Google Scholar 

  • Viard F, Ellien C, Dupont L (2006) Dispersal ability and invasion success of Crepidula fornicata in a single gulf: insights from genetic markers and larval-dispersal model. Helgoland Mar Res 60:144–152

    Article  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol-Prog Ser 393:1–12

    Article  Google Scholar 

  • Whitlock MC (2011) G’ST and D do not replace FST. Mol Ecol 20:1083–1091

    Article  Google Scholar 

  • Wonham MJ, O’Connor M, Harley CDG (2005) Positive effects of a dominant invader on introduced and native mudflat species. Mar Ecol-Prog Ser 289:109–116

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Allee, Z. Siegrist, J. Browne, J. Pechenik, P. Gaffney, R. Mann, and D. McGlashan for advice about collection sites or sample collection and the staff of the BioGenouest sequencing platform at the Station Biologique de Roscoff, C. Daguin-Thiebaut, and S. Mauger for technical assistance. J. Levinton, D. Padilla, D. Futuyma, W. Eanes, S. Koury, and the Padilla lab group provided useful comments on the project and manuscript. The work was supported by the American Malacological Society Melbourne R. Carriker Student Research Grant, the National Science Foundation International Research Experience for Students to A.E.C. for work in the team Diversity and Connectivity in Coastal Marine Landscapes in Roscoff, the Agence Nationale de la Recherche (project MIRAGE; no. ANR-05-BLAN-0001), and a National Science Foundation Graduate Research Fellowship to A.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail E. Cahill.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahill, A.E., Viard, F. Genetic structure in native and non-native populations of the direct-developing gastropod Crepidula convexa . Mar Biol 161, 2433–2443 (2014). https://doi.org/10.1007/s00227-014-2519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2519-2

Keywords

Navigation