Skip to main content
Log in

Clifford Algebra Formulation of an Electromagnetic Charge-Current Wave Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this work, a Clifford algebra approach is used to introduce a charge-current wave structure governed by a Maxwell-like set of equations. A known spinor representation of the electromagnetic field intensities is utilized to recast the equations governing the charge-current densities in a Dirac-like spinor form. Energy-momentum considerations lead to a generalization of the Maxwell electromagnetic symmetric energy-momentum tensor. The generalized tensor includes new terms that represent contributions from the charge-current densities. Stationary spherical modal solutions representing the charge-current densities and the associated self-fields are derived. The use of a Clifford type dependence on time results in a distinct symmetry between the magnetic and electric components. It is shown that, for such spherical modes, the components of the force density deduced from the generalized energy-momentum tensor can vanish under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. O. Barut and A. J. Bracken, “Particle-like configurations of the electromagnetic field: An extension of de Broglie's idea,” Found. Phys. 22, 1267-1285 (1992).

    Google Scholar 

  2. R. C. Jennison, “Wavemechanical inertia and the containment of fundamental particles of matter,” J. Phys. A: Math. Gen. 16, 3635-3638 (1983).

    Google Scholar 

  3. A. O. Barut, “Quantum theory of single events: Localized de Broglie wavelets, Schro_dinger waves and classical trajectories,” Found. Phys. 20, 1233-1240 (1990).

    Google Scholar 

  4. C. Elbaz, “Some inner physical properties of material particles,” Phys. Lett. A 123, 205-207 (1987).

    Google Scholar 

  5. W. E. Baylis, “Classical eigenspinors and the Dirac equation,” Phys. Rev. A 45, 4293-42302 (1992).

    Google Scholar 

  6. T. Waite, “Smooth vortex-like de Broglie particle_waves,” Ann. Fond. Louis de Broglie 20, 427-471 (1995).

    Google Scholar 

  7. D. Hestenes, “Local observables in the Dirac theory,” J. Math. Phys. 14, 893-905 (1973).

    Google Scholar 

  8. D. Hestenes, “Proper particle mechanics,” J. Math. Phys. 15, 1768-1777 (1974).

    Google Scholar 

  9. D. Hestenes, “Proper dynamics of a rigid point particle,” J. Math. Phys. 15, 1778-1786 (1974).

    Google Scholar 

  10. D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,” J. Math. Phys. 16, 556-572 (1975).

    Google Scholar 

  11. R. Gurtler and D. Hestenes, “Consistency in the formulation of the Dirac, Pauli, and Schro_dinger theories,” J. Math. Phys. 16, 573-584 (1975).

    Google Scholar 

  12. D. Hestenes, “Spin and uncertainty in the interpretation of quantum mechanics,” Am. J. Phys. 47, 399-415 (1979).

    Google Scholar 

  13. D. Hestenes, “Unified language for mathematics and physics,” in Clifford Algebras and Their Application in Mathematical Physics, J. S. R. Chislom and A. K. Common, eds. (Reidel, The Netherlands, 1986).

    Google Scholar 

  14. D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” in Clifford Algebras and Their Application in Mathematical Physics, J. S. R. Chislom and A. K. Common, eds. (Reidel, The Netherlands, 1986).

    Google Scholar 

  15. W. E. Baylis, J. Huschilt, and Jiansu Wei, “Why i?” Am. J. Phys. 60, 788-797 (1992).

    Google Scholar 

  16. W. E. Baylis and G. Jones, “The Pauli algebra approach to special relativity,” J. Phys. A: Math. Gen. 22, 1-15 (1989).

    Google Scholar 

  17. W. E. Baylis and G. Jones, “Relativistic dynamics of charges in external fields: The Pauli algebra approach,” J. Phys. A: Math. Gen. 22, 17-29 (1989).

    Google Scholar 

  18. K. R. Greider, “A unifying Clifford algebra formalism for relativistic fields,” Found. Phys. 14, 467-505 (1984).

    Google Scholar 

  19. D. Hestenes, “The zitterbewegung interpretation of quantum mechanics,” Found. Phys. 20, 1213-1233 (1990).

    Google Scholar 

  20. D. Hestenes, “Zitterbewegung modeling,” Found. Phys. 23, 365-387 (1993).

    Google Scholar 

  21. G. Salesi and E. Recami, “Field theory of the spinning electron and internal motions,” Phys. Lett. A 190, 137-143 (1994).

    Google Scholar 

  22. M. Pavsš ic, E. Recami, W. A. Rodrigues, Jr., G. D. Maccarrone, F. Raciti, and G. Salesi, “Spin and electron structure,” Phys. Lett. B 318, 481-488 (1993).

    Google Scholar 

  23. W. A. Rodrigues, Jr., J. Vaz, Jr., E. Recami, and G. Salesi, “About Zitterbewegung and electron structure,” Phys. Lett. B 318, 623-628 (1993).

    Google Scholar 

  24. J. Vaz, Jr., “The Barut and Zanghi model, and some generalizations” Phys. Lett. B 344, 149-157 (1995).

    Google Scholar 

  25. E. Recami and G. Salesi, “Field theory of the spinning electron: About the new nonlinear field equations,” Adv. Appl. Cliff. Alg. 6, 27-36 (1996).

    Google Scholar 

  26. W. A. Rodrigues, Jr., J. Vaz, Jr., and E. Recami, in Courants, Amers E_cueils En Micro-physique: Directions in Microphysics, G. P. Lochak, ed. (Paris, 1993). See also W. A. Rodrigues, Jr., and J. Vaz, Jr. “Subluminal and superluminal solutions in vacuum of the Maxwell equations and the massless Dirac equation;” preprint.

  27. A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, “A novel approach to the synthesis of nondispersive wave packet solutions to the Klein_Gordon and Dirac equations,” J. Math. Phys. 31, 2511-2519 (1990).

    Google Scholar 

  28. L. Mackinnon, “A nondispersive de Broglie wave packet,” Found. Phys. 8, 157–176 (1978). See also L. Mackinnon, “Particle rest mass and the de Broglie wave packet,” Lett. Nuovo Cimento 31, 37–38 (1981).

    Google Scholar 

  29. C. Elbaz, “Quelques proprié té s ciné matiques des ondes stationaires,” C. R. Acad. Sc. II 297, 455-458 (1983).

    Google Scholar 

  30. C. Elbaz, “On self-field electromagnetic properties for extended material particles,” Phys. Lett. A 127,308-314 (1988).

    Google Scholar 

  31. C. Elbaz, “Some physical properties of the amplitude function of material particles,” Phys. Lett. A 114, 445-450 (1986).

    Google Scholar 

  32. R. Mignani, E. Recami, and M. Baldo, “About a Dirac-like equation for the photon according to Majorana,” Lett. al Nuovo Cimento 11, 568-572 (1974).

    Google Scholar 

  33. E. Giannetto, “A Majorana_Oppenheimer formulation of quantum electrodynamics,” Lett. Nuovo Cimento 44, 140-144 (1985).

    Google Scholar 

  34. W. A. Rodrigues, Jr., J. Vaz, Jr., and E. Recami, “A generalization of Dirac nonlinear elec-trodynamics, and spinning of charged particles,” Found. Phys. 23, 469-485 (1993).

    Google Scholar 

  35. W. A. Rodrigues, Jr. and E. Capelas de Oliviera, “Dirac and Maxwell equations in the Clifford and spin-Clifford bundles,” Int. J. Theor. Phys. 29, 397-412 (1990).

    Google Scholar 

  36. J. Vaz, Jr. and W. A. Rodrigues, Jr., “Equivalence of Dirac and Maxwell equations and quantum mechanics,” Int. J. Theor. Phys. 32, 945-959 (1993).

    Google Scholar 

  37. A. A. Campolattaro, “New spinor representation of Maxwell's equations. I. Generalities,” Int. J. Theor. Phys. 19, 99-126 (1980).

    Google Scholar 

  38. A. A. Campolattaro, “New spinor representation of Maxwell's equations. II. Algebraic properties,” Int. J. Theor. Phys. 19, 127-138 (1980).

    Google Scholar 

  39. A. A. Campolattaro, “Generalized Maxwell equations and quantum mechanics. I. Dirac equation for the free-electron,” Int. J. Theor. Phys. 29, 141-155 (1990).

    Google Scholar 

  40. A. A. Campolattaro, “Generalized Maxwell equations and quantum mechanics. II. Generalized Dirac equation,” Int. J. Theor. Phys. 29, 477-482 (1990).

    Google Scholar 

  41. W. E. Baylis, ed., Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering (Birkhaä user, Boston, 1996).

    Google Scholar 

  42. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

    Google Scholar 

  43. G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaarawi, A.M. Clifford Algebra Formulation of an Electromagnetic Charge-Current Wave Theory. Foundations of Physics 30, 1911–1941 (2000). https://doi.org/10.1023/A:1003762405951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003762405951

Keywords

Navigation