Skip to main content
Log in

Biomanipulation in a theoretical and historical perspective

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In limnology, nutrients have historically been regarded as main regulators of the ecosystem; that is, organisms in lakes were seen as regulated from the bottom of the food chain. Long after the seminal works of Hairston et al. (1960), Hrbáček et al. (1961) and Brooks & Dodson (1965) this ‘bottom-up’ view prevailed. It was not until the late 1970s and 1980s that these new theories gained recognition, considering the ‘top-down’ effect; that is, the impact of predation on lower trophic levels. The decision to subject Lake Ringsjön to a biomanipulation was based on the fact that the phosphorus reductions accomplished during the 1970s did not have the positive effects expected. In addition, several theories had been proposed which predicted the effects of manipulations at the top of the food chain on lower trophic levels. In this paper, we describe how these different theories influenced us at the time the studies of Lake Ringsjön were initiated, and how difficult it may be to convert scientific theories into large-scale manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., 1984. The role of fish in lake ecosystems – and in limnology. In B. Bosheim & M. Nicholls (eds), Nordisk Limnolog Symposium, Oslo, Interaksjoner mellom trofiske nivaer i ferskvann, 189–197.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and the composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Canfield, D. E. Jr. & C. E. Watkins, 1984. Relationships between zooplankton abundance and chlorophyll-a concentration in Florida lakes. J. Freshwater Ecol 2: 335–344.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of Lake primary production by food web structure. Ecology 68: 1863–1878.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorous-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Elton, C. 1927. Animal Ecology. N.Y. Macmillan Co.

  • Fretwell, S. D., 1977. The regulation of plant communities by food chain exploring them. Perspectives in Biology and Medicine 20: 169–185.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control and competition. Am. Nat. 94: 421–425.

    Google Scholar 

  • Hanson, J. M. & R. H. Peters, 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish Aquat. Sci. 41: 439–445.

    Google Scholar 

  • Hansson, L.-A., 1992. The role of food chain composition and nutrient availability in shaping algal biomass development. Ecology 73: 241–247.

    Google Scholar 

  • Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish – issues of concern in biomanipulation of lakes. Restoration ecology 6: 1–10.

    Google Scholar 

  • Hrbáček, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstrations of the effects of fish stock on the species composition and the intensity of the metabolism of the whole plankton association. Verh. Int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic–dynamic aspect of ecology. Ecology 23: 399–418.

    Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish Aquat. Sci. 38: 458–463.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish Aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Mills, E. L. & A. Schiavone, 1982. Evaluation of fish communities through assessment of zooplankton populations and measures of lake productivities. North American Journal of Fisheries Management 2: 14–27.

    Google Scholar 

  • Naumann, E., 1932. Grundzüge der Regionalen Limnologie. Die Binnengewässer Band XI: 1–176.

  • Nichols, K. H. & P. J. Dillon, 1978. An evaluation of phosphorous– chlorophyll–phytoplankton relationships for lakes. Int. Rev. ges. Hydrobiol. 63: 141–154.

    Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–279.

    Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Arruda, & P. Niemelä, 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118: 240–261.

    Google Scholar 

  • Paine, R. T., 1980. Food webs, linkage interaction strength, and community infrastructure. J. Anim. Ecol. 49: 667–685.

    Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 45–65.

    Google Scholar 

  • Persson, L., J. Bengtsson, B. A. Menge & M. E. Power, 1996. Productivity and consumer regulation – concepts, patterns and mechanisms. In G. A. Polis & K. O. Winemiller (eds), Food Webs – Integration of Patterns and Dynamics. Chapman & Hall, New York: 396–434.

    Google Scholar 

  • Rodhe, W., 1975. The SIL founders and our fundament. Verh. Int, Ver. Limnol. 19: 16–25.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia, 200/201: 475–486.

    Google Scholar 

  • Scheffer, M., H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.

    Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. 85–96. In P. L. Brezonik & J. L. Fox (eds), Proceedings of the Symposium on Water Quality Management Through Biological Control. Rep. No. ENV-07-75-1.

  • Thienemann, A., 1921. Seetypen. Naturwissenschaften 18: 1–3.

    Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes, with particular reference to nitrogen and phosphorous as factors in eutrophication. Organization for Economic, Cooperation and Development, Paris. DAS/CS1/68.27. 159.

    Google Scholar 

  • Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Can. J. Fish Aquat. Sci. 38: 960–967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, LA., Andersson, G. Biomanipulation in a theoretical and historical perspective. Hydrobiologia 404, 53–58 (1999). https://doi.org/10.1023/A:1003761605064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003761605064

Navigation