Skip to main content
Log in

Cytochemical Localization of Calcium in Prefusion Myoblasts from the Chick Embryo Myotome

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Myoblast fusion is a Ca2+-dependent process. The aim of this report was to study the localization of Ca2+ in prefusion myoblasts from the brachial somites of chick embryos (51–108 h of incubation), using the potassium pyroantimonate cytochemical method. When observed under a transmission electron microscope, electron-dense precipitates of Ca2+-antimonate were found in the basement membrane of the myotome, which separates the myotome from the adjacent mesenchyma. Within myoblasts, triads and sarcoplasmic reticulum associated with the first newly formed sarcomeres were observed, but a T-tubule network was not found. Moreover, Ca2+-antimonate precipitates were not observed in structures resembling T-tubules or sarcoplasmic reticulum. The results suggest that sarcomerogenesis and sarcoplasmic reticulum development occur simultaneously and that prefusion myoblasts have neither a T-tubule network nor Ca2+ deposits on sarcoplasmic reticulum. Small Ca2+ pools were found in the myoblast nuclei, cytoplasmic vesicles and mitochondrias. Ca2+-antimonate precipitates periodically distributed at the cell periphery, close to the cell membrane, were observed. These precipitates could represent internal Ca2+ stores located in the peripheral couplings and it is proposed that these pools of Ca2+ could be mobilized before fusion, leading to the increase in free intracellular Ca2+ that precedes myoblast fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Andonov MD, Chaldakov GN (1989) Morphological evidence of calcium storage in the chromatoid body of rat spermatids. Experientia 45: 377-378.

    Google Scholar 

  • Appelton J, Morris DC (1979) The use of the potassium pyroantimonateosmium method as a means of identifying and localizing calcium at the ultrastructural level in the cells of calcifying systems. J Histochem Cytochem 27: 676-680.

    Google Scholar 

  • Bielefeld U, Zierold K, Körtje KH, Becker W (1992) Calcium localization in the shell-forming tissue of the freshwater snail, Biomphalaria glabrata: a comparative study of various methods for localizing calcium. Histochem J 24: 927-938.

    Google Scholar 

  • Bonilla E (1977) Staining of the transverse tubular system of skeletal muscle by tannic acid-glutaraldehyde fixation. J Ultrastruct Res 58: 162-170.

    Google Scholar 

  • David JD, Faser CR, Perrot GP (1990) Role of protein kinase C in chick embryo skeletal myoblast fusion. Dev Biol 139: 89-99.

    Google Scholar 

  • David JD, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: Interactions of prostaglandin E1, adenosine 3′:5′-monophosphate and calcium influx. Dev Biol 82: 308-316.

    Google Scholar 

  • David JD, See WM, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: Role of calcium influx preceding membrane union. Dev Biol 82: 297-307.

    Google Scholar 

  • Dessouki DA, Hibbs RG (1965) An electron microscope study of the development of the somatic muscle of the chick embryo. Am J Anat 116: 523-566.

    Google Scholar 

  • Endo T, Nadal-Ginard B (1987) Three types of muscle-specific gene expression in fusion-blocked rat skeletal muscle cells: translational control in EGTA-treated cells. Cell 49: 515-526.

    Google Scholar 

  • Entwistle A, Zalin RJ, Bevan S, Warner AE (1988) The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106: 1693-1702.

    Google Scholar 

  • Fischman DA (1967) An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol 32: 557-575.

    Google Scholar 

  • Fischman DA (1986) Myofibrillogenesis and the morphogenesis of skeletal muscle. In Engel AE, Banker BQ, eds. Myology, New York: McGraw-Hill, pp. 5-37.

    Google Scholar 

  • Flucher BE (1992) Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum and the triad. Dev Biol 154: 245-260.

    Google Scholar 

  • Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160: 135-147.

    Google Scholar 

  • Flucher BE, Terasaki M, Chin H, Beeler TJ, Daniels MP (1991) Biogenesis of transverse tubules in skeletal muscle in vitro. Dev Biol 145: 77-90.

    Google Scholar 

  • Franzini-Armstrong C (1991) Simultaneous maturation of tranverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol 146: 353-363.

    Google Scholar 

  • Franzini-Armstrong C, Jorgensen AO (1994) Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 56: 509-534.

    Google Scholar 

  • Fredette BJ, Rutishauser U, Landmesser LT (1993) Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development. J Cell Biol 123: 1867-1888.

    Google Scholar 

  • Hamburger V, Hamilton HL (1992) Aseries of normal stages in the development of the chick embryo. Dev Dynam 105: 231-272. Reprinted from J Morphol (1951) 88: 49-92.

    Google Scholar 

  • Heinrich UR, Drechsler M, Kreutz W, Mann W (1990) Identification of precipitable Ca2+ by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) in the organ of Corti of the guinea pig. Ultramicroscopy 32: 1-6.

    Google Scholar 

  • Heinrich UR, Gutzeit HO, Kreutz W (1991a) Elemental composition of pyroantimonate precipitates analysed by electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS) in vitellogenic ovarian follicles of Drosophila. J Microsc 162: 123-132.

    Google Scholar 

  • Heinrich UR, Maurer J, Mann W, Kreutz W (1991b) Progress in electron microscopic diagnostics: semi-quantitative determination of precipitable calcium in different cell types of the organ of Corti in the guinea-pig. J Microsc 162: 133-140.

    Google Scholar 

  • Holtzer H, Marshall JM, Finck H (1957) An analysis of myogenesis by the use of fluorescent anti-myosin. J Biophys Biochem Cytol 3: 705-724.

    Google Scholar 

  • Ishikawa H (1966) Electron microscope observation of satellite cells with special reference to the development of mammalian skeletal muscle. Z Anat Entw Gesch 125: 43-63.

    Google Scholar 

  • Kalderon N, Epstein ML, Gilula NB (1977) Cell-to-cell communication and myogenesis. J Cell Biol 75: 788-806.

    Google Scholar 

  • Kelly AM, Zacks SI (1969) The histogenesis of rat intercostal muscle. J Cell Biol 42: 135-153.

    Google Scholar 

  • Klein RL, Yen SS, Thureson-Klein A (1972) Critique on the Kpyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy. J Histochem Cytochem 20: 65-78.

    Google Scholar 

  • Knudsen KA, Horwitz AF (1977) Tandem events in myoblast fusion. Dev Biol 58: 328-338.

    Google Scholar 

  • Knudsen KA, Horwitz AF (1978) Differential inhibition of myoblast fusion. Dev Biol 66: 294-307.

    Google Scholar 

  • Knudsen KA, Myers L, McElwee SA (1990) A role for the Ca2+ dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis. Exp Cell Res 188: 175-184.

    Google Scholar 

  • Körtje KH, Körtje D, Rahmann H (1991) The application of energy-filtering electron microscopy for the cytochemical localization of Ca2+-ATPase activity in synaptic terminals. J Microsc 162: 105-114.

    Google Scholar 

  • Lee KH, Baek MY, Moon KY, Song WK, Chung CH, Ha DB, Kang MS (1994) Nitric oxide as a messenger for myoblast fusion. J Biol Chem 269: 14371-14374.

    Google Scholar 

  • Lobo MVT (1995) Contribución al estudio de la diferenciación ultraestructural de los mioblastos y su fusión. Estudio del miotomo del embrión de pollo. Ph.D. Thesis. Madrid: University of Alcalá de Henares.

    Google Scholar 

  • Lobo MVT, Alonso FJM, Rodriguez S, Alcazar A, Martin E, Muñoz F, Santander RG, Salinas M, Fando JL (1997a) Localization of eukaryotic initiation factor 2 in neuron primary cultures and established cell lines. Histochem J 29: 453-468.

    Google Scholar 

  • Lobo MVT, Cuadrado GM, Alonso FJM, Martinez MGS, Monteagudo M, Santander RG (1997b) Accumulation of glycogen particles in the chick embryo myotome in relation to the differentiation of myoblasts. Cell Vision 4: 318-330.

    Google Scholar 

  • Mentre P, Escaig F (1988) Localization of cations by pyroantimonate. I. Influence of fixation on distribution of calcium and sodium. An approach by analytical ion microscopy. J Histochem Cytochem 36: 49-54.

    Google Scholar 

  • Mentre P, Halpern S (1988) Localization of cations by pyroantimonate. II. Electron probe microanalysis of calcium and sodium in skeletal muscle of mouse. J Histochem Cytochem 36: 55-64.

    Google Scholar 

  • Moggio M, Jann S, Adobbati L, Prelle A, Gallanti A, Fagiolari G, Pellegrini G, Scarlato G (1989) Ultrastructural localization of calcium binding sites on human muscle cell surface. Muscle Nerve 12: 910-914.

    Google Scholar 

  • Moggio M, Fagiolari G, Prelle A, Gallanti A, Sciacco M, Scarlato G (1992) Lack of anionic phospholipid calcium binding sites in Duchenne muscular dystrophy. Muscle Nerve 15: 325-331.

    Google Scholar 

  • Ottensmeyer FP, Andrews JW (1980) High resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res 72: 336-384.

    Google Scholar 

  • Przybylski RJ, Blumberg JM (1966) Ultrastructural aspects of myogenesis in the chick. Lab Invest 15: 836-862.

    Google Scholar 

  • Przybylski RJ, Macbride RG, Kirby AC (1989) Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation. In vitro Cell Dev Biol 25: 830-838.

    Google Scholar 

  • Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC (1994) Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15: 132-142.

    Google Scholar 

  • Rapuano M, Ross AF, Prives J (1989) Opposing effects of calcium entry and phorbol esters on fusion of chick muscle cells. Dev Biol 134: 271-278.

    Google Scholar 

  • Robertson TA, Grounds MD, Mitchell CA, Papadimitriou JM (1990) Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J Struct Biol 105: 170-182.

    Google Scholar 

  • Santander RG, Cuadrado GM, Martinez MGS Monteagudo M, Alonso FJM, Lobo MVT (1997) The use of different fixatives and hydrophilic embedding media (Historesin and Unicryl) for the study of embryonic tissues. Microsc Res Tech 36: 151-158.

    Google Scholar 

  • Santander RG, Lobo MVT Alonso FJM Cuadrado GM, Martinez MGS, Monteagudo M (1995) Recognition-alignment and adhesion in myoblast fusion. In Bailey GW, Ellisman MH, Hennigar RA, Zaluzec NJ, eds. Microscopy and Microanalysis 1995. New York: Jones & Begell Publishing, pp. 900-901.

    Google Scholar 

  • Schudt C, Pette D (1975) Influence of the ionophore A 23187 on myogenic cell fusion. FEBS Lett 59: 36-38.

    Google Scholar 

  • Schudt C, Van der bosch J, Pette D (1973) Inhibition of muscle cell fusion in vitro by Mg2+ and K2+ ions. FEBS Lett 32: 296-298.

    Google Scholar 

  • Seigneurin-Venin S, Parrish E, Marty I, Rieger F, Romey G, Villaz M, Garcia L (1996) Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion. Exp Cell Res 223: 301-307.

    Google Scholar 

  • Shainberg A, Yagil G, Yaffe D (1969) Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp Cell Res 58: 163-167.

    Google Scholar 

  • Shimada Y (1971) Electron microscope observations on the fusion of chick myoblasts in vitro. J Cell Biol 48: 128-142.

    Google Scholar 

  • Van deurs B (1975) The use of a tannic acid-glutaraldehyde fixative to visualize gap and tight junctions. J Ultrastruct Res 50: 185-192.

    Google Scholar 

  • Wakelam MJO (1985) The fusion of myoblasts. Biochem J 228: 1-12.

    Google Scholar 

  • Wakelam MJO (1988) Myoblast fusion. A mechanistic analysis. Curr Topics Membr Transport 32: 87-112.

    Google Scholar 

  • Wooding FBP, Morgan G (1978) Calcium localization in lactating rabbit mammary secretory cells. J Ultrastruct Res 63: 323-333.

    Google Scholar 

  • Zahradka P, Larson DE, Sells BH (1991) Regulation of ribosome biogenesis in differentiated rat myotubes. Mol Cell Biochem 104: 189-194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, M.V., Santander, R.G., Cuadrado, G.M. et al. Cytochemical Localization of Calcium in Prefusion Myoblasts from the Chick Embryo Myotome. Histochem J 31, 347–355 (1999). https://doi.org/10.1023/A:1003744007153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003744007153

Keywords

Navigation